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Context: Crop irrigation

Agriculture accounts for 70% (ref. world bank) of all freshwater withdrawals
globally

Drought is more frequent due to global climate change

⇒ Crop irrigation is more often a necessity

The management of water use in irrigation is important
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Context: Irrigation management using decision
support tools (DSTs)

DSTs are real-time models that schedule irrigation using daily updated actual
weather data and forecasts.
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Uncertainty could either come from the water balance model or from the
weather data inputs
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Numerical weather prediction uncertainty

Sources of uncertainty:
1 Numerical weather model formulation uncertainties
2 Uncertainty in initial conditions of the atmosphere ⇒ uncertainty in the

predictions made
Ensemble prevision approach:

founded chaos theory as a result of his attempt to quantify atmospheric
predictability. From his conclusion—that unstable systems have finite,
state dependent limits of predictability—was born the need for encap-
sulating the growth of initial condition uncertainties, their evolution as a
function of the atmospheric state, and errors introduced by imperfect
models. The recognition of imperfect forecasts24 and determining how
to calculate analysis and forecast uncertainty using an ensemble
approach25 represent major and unique accomplishments in physical
sciences. This is particularly true for the prediction of highly variable
parameters like precipitation (Fig. 3), where ensemble spread quantifies
forecast uncertainty of rainfall location and intensity and thus provides
essential information to users.

The nonlinear complexity of the system means that purely statistical
methods to assign an uncertainty to the forecast are inadequate. Instead,
an ensemble of many complete, physical, nonlinear realizations of the
system is needed26,27, providing a seamless analysis and forecast ensemble
in which observational information is used to reduce uncertainty. In
practice, the ensemble members are created using perturbations, equival-
ent to analysis and model errors, added to the initial state and the model
physical processes. Determining these perturbations consistently and
seamlessly so that the ensemble provides a good estimate of uncertainty
across a wide range of prediction scales is challenging, and the input of
mathematics and statistical physics expertise was crucially important28,29.
Weather forecasts today involve an ensemble of numerical weather pre-
dictions, providing an inherently probabilistic assessment.

Model initialization
Early methods for the specification of initial conditions were based on
the analysis of graphical and synoptic weather charts. Various forms of
interpolation procedures were later replaced by data assimilation tech-
niques based on optimum control theory30. The derivation of the current
state (called the analysis) of the atmosphere and surface is treated as a
Bayesian inversion problem using observations, prior information from
short-range forecasts and their uncertainties as constraints as well as the
forecast model31,32. These calculations, involving a global minimization,
are performed in four dimensions to produce an analysis that is phys-
ically consistent in space and time and can deal with huge amounts of
observational data that are heterogeneously distributed in space and
time (such as the vast amount and diversity of satellite data used for
Earth observation since the 1980s). Since initial state uncertainty estima-
tion is also crucial for ensemble prediction and because data assimilation
employs both imperfect observations and forecast model, ensemble
methods have also become an integral part of data assimilation33, as
shown in Fig. 4.

The operational implementation of these four-dimensional variational
(4D-Var) data assimilation techniques34 marks a major milestone in
operational global NWP. At the European Centre for Medium-Range
Weather Forecasts (ECMWF) this occurred in 199735, followed by

Météo-France in 200036, the Met Office in 200437, both the Japan
Meteorological Agency38 and Environment Canada in 200539, and the
United States Naval Research Laboratory in 200940. Development and
first implementation of 4D-Var took more than 10 years, and further
research has substantially refined the main ingredients. These were
the increasing use of satellite radiance data by combining the forecast
model with computationally efficient radiative transfer models41,42,
the much refined characterization of short-range forecast43 and obser-
vation errors44 using state dependent weights for each, and better use of
observations arising from significant improvements of physical
parameterizations45.

Predictability and predictive skill
A continuing and important area of research focuses on the sources of
predictability in the Earth system. Forecasting future weather is like a
battleground, with the forces of predictability pitched against those of
unpredictability. The sources of predictability include large-scale for-
cing of smaller-scale weather, teleconnections or the chain of predict-
ability across different geographical areas46, and the interactions
between atmosphere, land surfaces and vegetation, sea-ice and ocean
acting on longer timescales. The sources of unpredictability include

2 5 15 40 70 85

Probability of

precipitation (%)

Forecast

uncertainty

TimeAnalysis

Initial condition

uncertainty

Figure 3 | Schematic diagram of 36-h ensemble
forecasts used to estimate the probability of
precipitation over the UK. A single forecast (red
frame, centre) is generated by integrating the
model forward in time from the analysis of initial
atmospheric state (left). Small perturbations to the
analysis, within known analysis uncertainty,
provide an ensemble of forecast solutions, which
sample the forecast uncertainty (multiple frames).
These solutions are combined, including some
spatial neighbourhood sampling, to provide a
smooth estimate of probability of precipitation
(right). Image courtesy of K. Mylne (Met Office).
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Figure 4 | Schematic of the ensemble analysis and forecast cycle. Global
ensemble forecast trajectories, which have been initialized by a previous
analysis ensemble, are produced over a time window (for example, 09:00–21:00
UTC). These provide estimates of the current weather (first guesses). The
difference between these forecasts and available observations (shown as data
points with error bars) is the short-range forecast error. By minimization in
four dimensions employing variational techniques, improved estimates (4D-
Var trajectories) are created with reduced distance to observations. The next
cycle of ensemble forecasts is then initialized from these refined analyses. Image
courtesy of M. Bonavita (ECMWF).
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Application to the DSTs

State of the art:
The current use of these DSTs mostly based on deterministic weather
forecasts (i.e single value forecast that does not account for uncertainty)
Or the use of ensemble of historical weather data (accounts for uncertainty
but is it the best way?).

Concept of the use of Ensemble prevision as input in DSTs:
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The current study: objective, materials and methods
Objectives of the study:

Compare the performance of ensemble water stress predictions using either state-of-the-art ensemble
weather forecasts or an ensemble of historical weather observation (1 vs 2).
Investigate the effect of post-processing on the probabilistic skill of the water stress index (3 vs 4).
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The current study: objective, materials and methods

Materials and methods:

Numerical weather prevision used is IFS-EPS (zone: World, validity period:
15 days, size: 51 members, horizontal resolution: 18Km)

WaLIS water balance model (developed by Inrae and IFV) for vines irrigation

Summer period (June to September), years 2018-2019-2020-2021

10 sites in the south of France
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The current study: objective, materials and methods
How to evaluate the performance of an ensemble prevision ?
Many characteristics: Accuracy, reliability, sharpness etc ..

Scores: many scores ! In this study we use the continuous ranked probability score (CRPS):

CRPS =

∫ +∞

−∞
(Ffcst(x)− Fobs(x))

2 dx

Continuous ranked probability score (CRPS) measures the 

difference between the forecast and observed CDFs

Continuous ranked probability 
score (CRPS)

( )∫
∞

∞−

−= dx)x(P)x(PCRPS obsfcst

2

• Same as Brier score integrated over all thresholds 

• On continuous scale: does not need reduction of ensemble 

forecasts to discrete probabilities of binary or categorical 

events (for multi-category use Ranked Probability Score)

• Same as Mean Absolute Error for deterministic forecasts

• Has dimensions of observed variable

• Perfect score: 0

• Rewards small spread (sharpness) if the forecast is accurate

• Skill score wrt climatology:
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N.B: In our case the obs is the stress index computed by running the WaLIS
model using the observation of the meteo variables.
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Results (comparison IFS-EPS vs EHO)
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Results (comparison IFS-EPS vs EHO)

Ensemble forecast (IFS-EPS) Ensemble of historical observations (EHO)

Lead IC50 IC90 % in IC50 % in IC90 CRPS IC50 IC90 % in IC50 % in IC90 CRPS
1 0.006 0.017 13.792 32.500 0.007 0.008 0.045 41.282 70.876 0.010
2 0.012 0.031 19.850 42.622 0.011 0.018 0.074 42.158 72.003 0.017
3 0.017 0.043 22.403 48.979 0.014 0.028 0.098 41.752 72.516 0.023
4 0.022 0.057 25.470 53.766 0.0177 0.037 0.117 41.116 73.162 0.028
5 0.028 0.072 27.435 57.270 0.020 0.045 0.133 40.368 73.205 0.032
6 0.033 0.087 27.948 59.978 0.024 0.053 0.147 39.166 73.579 0.036
7 0.039 0.105 28.878 62.377 0.027 0.059 0.158 31.717 74.091 0.039
8 0.046 0.122 30.165 64.273 0.030 0.064 0.168 38.397 74.113 0.042
9 0.051 0.137 31.255 65.918 0.033 0.068 0.176 37.980 74.326 0.044
10 0.057 0.152 33.044 68.392 0.036 0.072 0.183 37.777 74.989 0.046
11 0.063 0.167 34.385 69.599 0.038 0.076 0.190 37.441 75.048 0.048
12 0.068 0.181 35.876 71.282 0.040 0.079 0.196 37.793 75.048 0.050
13 0.074 0.192 36.442 72.307 0.042 0.082 0.201 37.863 74.636 0.051
14 0.078 0.203 37.537 73.675 0.044 0.084 0.206 35.857 74.444 0.053
15 0.084 0.214 38.488 74.380 0.046 0.087 0.211 37.948 74.487 0.0546
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Why to post-treat ensemble previsions ?

Existence of systematic bias error in the prediction sometimes

Dispersion error in the ensemble sometimes

EMOS is a statistical post-processing method that addresses these issues
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EMOS method for post-treatment of ensemble
prevision

Let X1,X2, ...,XN be the members of the ensemble X.

Assumption on the distribution of the ensemble to post-treat (e.g normal
distribution).

Fit the parameters of predictive distribution N(a+ bX , c + dV (X )) by
minimizing the CRPS on a training data set.

Usually the training data set is a moving window consisting in T training
days before the day J of the prevision to post-treat.
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Results (Post treatment EMOS)
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Results (Post treatment EMOS)

Locally: 4/10 sites present improvement after post-treating.

The improvement becomes significant (p-value < 0.05) starting leads 5-6-7.

Globally averaged on all sites tiny improvement.

No significant difference between direct and indirect post-treatment.
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Take home messages:

The use of ensemble prevision in irrigation DSTs is promising and has better
results in comparison with the use of historical weather observations.

Post-treatment of ensemble water stress index could show improvement in
ensemble previsions locally in some sites.

Globally on all sites post-treating the water stress index ensemble prevision
could improve the predictions by reducing the dispersion error and the bias.

No advantage in post-treating directly the water stress index.

Perspectives:

Investigate the uncertainty that comes from the DST model itself.

Thank you for your attention !
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