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Motivations (and few notations)
A very general class of problem

We are interested in the resolution of the linear Boltzmann equation

∂tu(x, t,v) + v · ∇u(x, t,v) = −vσt(x,v)u(x, t,v)

+

∫
vσs(x,v,v

′)u(x, t,v′) dv′.

Few constraints for the resolution:

Dimension 7 = 3(x) + 1(t) + 3(v) =⇒ use of Monte-Carlo (MC).

Need for accurate transient/late time (t∗): U(x, t∗) =
∫
u(x, t∗,v)dv.

In this talk, we are interested in: Uncertainty Analysis

Assume some parameters X ∈ RQ in the above PDE are uncertain

General dependence w.r.t. X of (σα)α∈{s,t}, u0, boundary conditions etc.

We model them thanks to random variables of probability measure X ∼ dPX

=⇒ We need to solve a stochastic PDE in order to propagate uncertainties
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The uncertain linear Boltzmann equation
A brief presentation of what is in [21]

We are interested in the resolution of the uncertain linear Boltzmann equation

∂tu(x, t,v, X) + v · ∇u(x, t,v, X) + vσt(x,v, X)u(x, t,v, X)

=

∫
vσs(x,v,v

′, X)u(x, t,v′, X) dv′,

where X ∈ RQ is a random variable of dimension Q sampled from dPX .
Few constraints for the resolution:

7 +Q = 3(x) + 1(t) + 3(v) +Q(X) (independent) dimensions.

Statistics of U(x, t∗, X) =
∫
u(x, t∗,v, X)dv

About the resolution of the above stochastic PDE:

Once a simulation device at hand to approximate the solution, the most
straightforward uncertainty propagation method is the non-intrusive one.

In our codes, the transport equation is often solved using an MC scheme.

• In our codes, the transport equation is often solved using an MC scheme.
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Now, in general, for our application, an MC scheme is used
General properties of MC resolutions

Inconditionally stable scheme: the time step can be the time of interest t∗.
(MC schemes scale weakly in a replication domain context if ∆t is high enough)

Positive scheme.

Converging scheme (Law of large number, see Lapeyre-Pardoux-Sentis)

Asymptotically, with up(x, t,v) = wp(t)δx(xp(t))δv(vp(t)), we have

√
NMC

(
NMC∑
k=1

up(x, t,v)− u(x, t,v)

)
L−→ G(0, σMC),

(Central Limit theorem, see Lapeyre-Pardoux-Sentis [17]).

We will abusively but concisely write the error is eNMC
= O

(
1√
NMC

)
.

The performance of the MC schemes can be studied by analyzing σMC.

Several schemes: analog, non-analog, with variance reduction technics...
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Algorithmic sketch for the non-analog MC scheme
(Backward formulation with constant per cell cross-sections)

set u(x, t, v) = 0
for p ∈ {1, ..., NMC} do

set sp = t #this will be the life time of particle p
set xp = x
set vp = v

set wp = 1
NMC

while sp > 0 and wp > 0 do

Sample τ by inversing the cdf of an exponential law τ = − ln(U([0,1]))
vpσs(xp,vp)

if τ > sp then
#move the particle p
xp− = vpsp ,
#set the life time of particle p to zero:
sp = 0
#change its weight

wp× = e
−vσa(xp,vp)sp

#tally the contribution of particle p
u(x, t, v)+ = wp × u0(xp, vp)

end
else

#move the particle p
xp− = vpτ ,
#change the weight of the particle

wp× = e
−vσa(xp,vp)τ

Sample the velocity V′ sampled from Ps(xp, v′, vp)dv′

vp = V′
#set the life time of particle p to:
sp− = τ

end

end

end
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Non-intrusive method for uncertainty propagation
Based on a point-wise discretisation of (X, dPX)

1 X is an arbitrary random variable of probability measure dPX .

2 Discretization of (X, dPX) by a quadrature with N points (Xi, wi)i∈{1,...,N}.

3 N independent solutions at points (Xi, wi):

(u(x, t,v, Xi), wi)i∈{1,...,N}, solutions of your favorite problem

4 Estimation of the statistical quantities of interest by numerical integration:

E[U ](x, t) =

∫∫
u(x, t,v, X)dvdPX ,

∫ N∑
k=1

E[U2](x, t) =

∫ (∫
u(x, t,v, X)dv

)2

dPX ,

∫ N∑
k=1

V[U ](x, t) = E[U2](x, t)− (E[U ](x, t))2,+O(Nβ) +O(∆)
... = ...

5 Other examples of interesting statistical quantities will be given later
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A homogeneous uncertain con�guration
Analytical solution for statistical observables

The error e for the UQ problem, on any statistical observable, is

eN∆ = O(∆)︸ ︷︷ ︸
deterministic solver

+ O(Nβ)︸ ︷︷ ︸
uncertainty integration

.

Illustration on a homogeneous uncertain problem for which an analytical
solution for the variance can be built (see [21])

Convergence studies w.r.t. to ∆ and N for two di�erent strategies:
∆ = ∆t, Nβ = 1√

2πNGL

(
e

NGL

)NGL
∆ =

1√
NMC

,N
β

=
1√

N
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Interpretation of the previous non-intrusive results
(using an MC scheme for the deterministic resolution)

When running N times the MC code:
MC particles for (x, t,v) and the experimental design for X are tensorised.

(We need to deal with N(X)×NMC(x, t,v) MC particles)

MC methods are integration methods supposed to avoid such tensorisation!

(Is it possible to have only NMC for the whole set of variables (x, t,v, X)?)

Main di�culty: as always, �nding the relevant linearisation
=⇒ example of the equation satis�ed by the second order moment
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Equation satis�ed by the second moment
The need for a relevant linearisation

The simplest statistical observable is the variance:
V[u](x, t,v) = M2(x, t,v)−M2

1 (x, t,v) with

M2(x, t,v) =

∫
u2(x, t,v, X)dPX =

∫
m2(x, t,v, X)dPX .
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Equation satis�ed by the second moment
The need for a relevant linearisation

The equation satis�ed by u is

∂tu(x, t,v, X) + v · ∇u(x, t,v, X) = −vσt(x,v, X)u(x, t,v, X)

+

∫
vσs(x,v,v

′, X)u(x, t,v′, X)dv′,

and is linear so why do we need a relevant linearisation?
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Equation satis�ed by the second moment
The need for a relevant linearisation

Let us multiply the transport equation by u to obtain

∂t
u2

2 (x, t,v, X) + v · ∇u2

2 (x, t,v, X) = −vσt(x,v, X)u2(x, t,v, X)

+u(x, t,v, X)

∫
vσs(x,v,v

′, X)u(x, t,v′, X)dv′,

in which it remains to make u2 = m2 appear.
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Equation satis�ed by the second moment
The need for a relevant linearisation

If u is solution of the uncertain transport equation, quantity m2 is solution of

∂tm2(x, t,v, X) + v · ∇m2(x, t,v, X) = −2vσt(x,v, X)m2(x, t,v, X)

+2u(x, t,v, X)

∫
vσs(x,v,v

′, X)u(x, t,v′, X)dv′,

which is nonlinear in general (i.e. if σs ̸= 0).
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Equation satis�ed by the second moment
The need for a relevant linearisation

Nonlinearity demands a splitting/linearisation hypothesis.

∂tm2(x, t,v, X) + v · ∇m2(x, t,v, X) = −2vσt(x,v, X)m2(x, t,v, X)

+2u(x, t,v, X)

∫
vσs(x,v,v

′, X)u(x, t,v′, X)dv′,

which is nonlinear in general (i.e. if σs ̸= 0).

The most common linearisation strategies for this type of quadratic operator:

Nanbu-like method [6] (O(∆t) splitting)
(would need small time steps in very collisional media)

Bird-like method [4] (O(∆t) splitting).
(would also need small time steps in some regimes)

Posttreatment of a count rate �le from an analog resolution [7] O(∆t).
(explosion of the I/O and �le size close to criticity)

• AND we need a linearisation working for other statistical quantities too.
=⇒ We here only suggest a new linearisation (with respect to P introduced later).

(see also [21, 22, 23, 24, 28, 9, 20] for other physical applications)
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A gPC-based linearisation
(being intrusive is sometimes very e�cient)

Convergence theorem for generalised Polynomial Chaos [33, 8, 35, 32, 12]
(also called stochastic �nite elements in the literature [31, 13, 11, 34, 14])

Let X be an arbitrary r.v. of probability measure dPX(x),
(ϕk)k∈N is the basis of orthonormal polynomials with respect to dPX(x)

Let u(X) be an unknown random variable with

∫
u2(X)dPX < ∞,

then uP (X) =

P∑
k=0

ukϕk(X)
L2

−→
P→∞

u(X) , where uk =

∫
u(X)ϕk(X)dPX .

Idea: compute the coe�cients (uk)k∈{0,...,P} during the MC resolution

Of course, one can obtain the coe�cients non-intrusively [15, 10, 19, 29, 18]

How do we use that convergence theorem?
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A gPC-based reduced model for uncertain transport
(order P is the new linearisation parameter... Looks like Pn models...)

Let us build a gPC based reduced model for the uncertain transport equation

Let us de�ned the gPC developpement

uP (x, t,v, X) =
P∑

q=0

uk(x, t,v)ϕk(X) with uk(x, t,v) =

∫
u(x, t,v, X)ϕk(X)dPX .

Let us plug uP in the transport equation and perform a Galerkin projection to get

∂tu0 + v · ∇xu0 = −v

∫ σt

∑
k≤P

ukϕk

ϕ0dPX + v

∫∫ σs

∑
k≤P

ukϕk

ϕ0dPX

 dv′,

. . . . . .

∂tuP + v · ∇xuP = −v

∫ σt

∑
k≤P

ukϕk

ϕP dPX + v

∫∫ σs

∑
k≤P

ukϕk

ϕP dPX

 dv′.

The reduced model is still linear =⇒ it can be solved by an MC scheme.

In fact, it can be solved by slightly modifying an already existing MC code [21].
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A gPC-based reduced model for uncertain transport
Spectral convergence with respect to P

In [22], proof of spectral convergence as P → ∞ for the gPC reduced model:

Let us de�ned the gPC developpement uP =

P∑
q=0

uqϕq with uq =

∫
uϕqdPX .

De�ne the space of functions

Hk(Θ) =

{
u ∈ L2

Θ

∣∣∣ ∫ k∑
l=0

(u(l))2dPX < ∞

}
.

Assume bounds on the cross-sections

∥vσt∥L∞(I×Θ) = Σt < ∞, ∥vσs∥L∞(I×Θ) = Σs < ∞. (1)

Theorem (Convergence of the P−truncated gPC reduced model approximation)

Spectral accuracy holds in the following sense: for all k ∈ N such that u ∈ Hk(Θ), there
exists a constant Dk such that ∀t ∈ [0, T ]∥∥∥u(t)− uP (t)

∥∥∥2

L2(I,Θ)
≤ e2(Σt+Σs)t

(∥∥∥u0 − uP
0

∥∥∥2

L2(I,Θ)
+ 2(Σs +Σt)t∥u2

0∥L2(I,Θ)

Dk

P k

)
.
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The gPC intrusive non-analog MC scheme as in [21]
(Backward formulation with constant per cell cross-sections)

for k ∈ {0, ..., P} do
set uk(x, t, v) = 0

end
for p ∈ {1, ..., NMC} do

set sp = t #this will be the remaining life time of particle p, it must go down to zero (backward)
set xp = x
set vp = v

set wp = 1
NMC

set Xp = X with X sampled from the probability measure dPX.

while sp > 0 and wp > 0 do

Sample τ by inversing the cdf of an exponential law τ = − ln(U([0,1]))
vσs(xp,vp,Xp)

if τ > sp then
xp− = vpsp ,
sp = 0

wp× = e
−vσa(xp,vp,Xp)sp

#tally the contribution of particle p
for k ∈ {0, ..., P} do

uk(x, t, v)+ = wp × u0(xp, vp,Xp)ϕk(Xp)

end

end
else

xp− = vpτ ,

wp× = e
−vσa(xp,vp,Xp)τ

vp = V′ with V′ sampled from Ps(xp, v′, vp,Xp)dv′
#set the life time of particle p to:
sp− = τ

end

end

end

=⇒ A converging MC scheme with simple modi�cations of an existing MC implementation [21]
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The previous homogeneous uncertain con�guration
Back to the analytical solution for statistical observables (variance)

Back to the previous convergence study with the new reduced model
non-intrusive NMC = 10
non-intrusive NMC = 20
non-intrusive NMC = 100

gPC intrusive MC scheme (NMC = NUQ
MC)
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With the new MC-gPC scheme: NUQ
MC = NMC .

The truncation order for this test-case is P = 1.

The error e is now e = O
(

1√
NMC

)
(for this test-pb at least!)

=⇒ but surely depends also more thoroughly on P for other problems...
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A �rst simple con�guration [21]
equilibrium uncertain test problem

 ∂tu+ vω∇xu = −vσs(X)u+

∫
vσs(X)udω′,

u(x, 0,v) = u0(x) = δ1(x).

We assume X ∼ U([−1, 1]) with σs(X) = σs + σ̂sX with σs = 1 and σ̂s = 0.99.
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
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Uncertain linear Boltzmann equation
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7

t
=

1.
8

realisations
Mean

Variance

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

x
p. 20/35



Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Comparisons MC-gPC vs. classical non-intrusive gPC [21]
Monokinetic monodimensional (Q = 1) uncertain problem

For the results obtained with the MC-gPC solver:

Non-intrusive gPC reference obtained for NMC = 3.2× 108, NGL = 4, P = 2.

taking NMC = 3.2× 108, P = 2 =⇒ perfect agreement with the reference.

Performance considerations:

ni-gPCa cost: 1NGL×averaged CPU time of 1e run≈ 4× 85.0s.
MC-gPC cost: aaaa 1×e�ective CPU time of the run= 1× 86.6s.

=⇒ MC-gPC is ≈ 4 times faster than the non-intrusive application.
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Application to a sensitivity analysis problem
Mean, variance and total Sobol indices

Sobol's indices: powerful, reliable but costly tool for sensitivity analysis [16]

Sensitivity analysis test-problem in the following slide:

A 3−D problem with uncertainties a�ecting σs, σt, η

p. 22/35



Sensitivity analysis in 3D stochastic dimension
Case presentation

The con�guration is the following:

Set-up:

wall

u0(x, ω,X) = 1

Domain D = [0, 1]

X = (X1, X2, X3) independent uniform on [−1, 1]

σt(X) = σt(X1) = σt + σ̂tX1

σs(X) = σt(X2) = σs + σ̂sX2

η(X) = η(X3) = η + η̂X3

Monokinetic problem: v = 1

σt = 1.0, σ̂t = 0.4

η = 1.0, η̂ = 0.4

σs = 0.9, σ̂s = 0.4

x0 1

The statistical outputs are the mean E[U ], variance V[U ] and Sobol indices
S[U ] pro�les of U(x, t,X) =

∫
u(x, t, ω,X)dω at time t = 1.0.

For this test-case, a non-intrusive gPC reference can still be obtained p. 23/35



Sensitivity analysis in 3D stochastic dimension
Mean, variance and total Sobol indices
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=⇒ Perfect agreement with the MC-gPC scheme and the references.
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Sensitivity analysis in 3D stochastic dimension
Performance considerations

Perfect agreement non-intrusive gPC vs. MC-gPC on every statistical observables
Few characteristics:

ni-gPCa: NQ
GL = 43 = 64 points with (P + 1)Q = (2 + 1)3 = 27 coe�cients.

MC-gPC: NQ
GL = 43 = 64 points with (P + 1)Q = (2 + 1)3 = 27 coe�cients.

=⇒ same truncation order P ensures the same accuracy.

Performance considerations:

ni-gPC acost: 1NQ
GL = 43×averaged CPU time of 1e run≈ 64× 3min52s.

MC-gPC cost: aaaaaaaaa 1×e�ective CPU time of the run= 1× 4min50s.

=⇒ It is ≈ 50 times faster than the non-intrusive application.

But the cost of a MC-gPC run is ≈ 1.26× the cost of a non-intrusive one.

=⇒ Something to dig here? Additional cost comes from the tallying phase [21]

The tallying phase is the only one sensitive to the dimension Q.
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The MC-gPC solver for the uncertain transport equation
Short summary on this topic

On the new MC-gPC scheme (allowing to characterise δX):

Spectral convergence as P grows of the gPC based reduced model in [22]

Convergence with respect to NMC of the MC-gPC solver in [21] for �xed P
(many other properties are studied in [21, 22])

MC-gPC (1 run/NMC particles) vs. non-intrusive gPC (N runs/NMC particles)
(accelerations between ×4 to more that ×50, see [21])
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The MC-gPC solver for the uncertain transport equation
Short summary on this topic

On the new MC-gPC scheme (allowing to characterise δX):

Spectral convergence as P grows of the gPC based reduced model in [22]

Convergence with respect to NMC of the MC-gPC solver in [21] for �xed P
(many other properties are studied in [21, 22])

Let us focus on performance considerations
(accelerations between ×4 to more that ×50, see [21])
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The MC-gPC solver for the uncertain transport equation
Short summary on this topic

On the new MC-gPC scheme (allowing to characterise δX):

Spectral convergence as P grows of the gPC based reduced model in [22]

Convergence with respect to NMC of the MC-gPC solver in [21] for �xed P
(many other properties are studied in [21, 22])

MC-gPC (1 run/NMC particles) vs. non-intrusive gPC (N runs/NMC particles)
(accelerations between ×4 to more that ×50, see [21])
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The MC-gPC solver for the uncertain transport equation
Short summary on this topic

On the new MC-gPC scheme (allowing to characterise δX):

Spectral convergence as P grows of the gPC based reduced model in [22]

Convergence with respect to NMC of the MC-gPC solver in [21] for �xed P
(many other properties are studied in [21, 22])

MC-gPC allows important gains in comparison to non-intrusive gPC
(accelerations between ×4 to more that ×50, see [21])
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The MC-gPC solver for the uncertain transport equation
Short summary on this topic

On the new MC-gPC scheme (allowing to characterise δX):

Spectral convergence as P grows of the gPC based reduced model in [22]

Convergence with respect to NMC of the MC-gPC solver in [21] for �xed P
(many other properties are studied in [21, 22])

But the linear Boltzmann equation is scarcely used as such
(is MC-gPC still e�cient on ke� computations [28]? Coupled with nonlinear physics [24]?)
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Uncertain ke� computations
Work in collaboration with E. Brun (DES), see [28]

We are interested in taking into account uncertainties on ke� , u such that
v · ∇xu(x,v) + vσt(x,v)u(x,v) = vσs(x,v)

∫
Ps(x,v · v′)u(x,v′)dv′,

+
vνf (x,v)σf (x,v)

ke�

∫
Pf (x,v · v′)u(x,v′)dv′,

u(x,v) = ub(v), x ∈ ∂D, v
v · ns < 0, with |v| = v.

(2)

The above equation can be more concisely rewritten as{
Lu = 1

ke�
Fu,

Bu.
(3)

=⇒ we are looking for u the �xed point of the above equation

The power iteration method [5] consists in choosing the nth iteration of the algorithm as
Lun = 1

kn−1
e�

Fun−1,

u0 = un−1,
Bun,

where kn
e�

= kn−1
e�

×
∫
D
∫
V un(x,v)dxdv∫

D
∫
V un−1(x,v)dxdv

. (4)

Asymptotically as n → ∞, the solution un ≈ un−1 ≈ u∞ solves (3).
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Uncertain ke� computations
Work in collaboration with E. Brun (DES), see [28]

We are interested in taking into account uncertainties on ke� , u such that
v · ∇xu(x,v) + vσt(x,v)u(x,v) = vσs(x,v)

∫
Ps(x,v · v′)u(x,v′)dv′,

+
vνf (x,v)σf (x,v)

ke�

∫
Pf (x,v · v′)u(x,v′)dv′,

u(x,v) = ub(v), x ∈ ∂D, v
v · ns < 0, with |v| = v.

(2)

The above equation can be more concisely rewritten as{
Lu = 1

ke�
Fu,

Bu.
(3)

=⇒ we are looking for u the �xed point of the above equation

Modi�ed power iteration method [28]:
∂tun + Lun = 1

kn−1
e�

Fun,

u0 = un−1,
Bun,

where kn
e�

= kn−1
e�

×
∫
D
∫
V u(x, tn,v)dxdv∫

D
∫
V u(x, tn−1,v)dxdv

. (4)

Asymptotically as n×∆t → ∞, the solution un ≈ un−1 ≈ u∞ solves (3).
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Uncertain ke� computations
Work in collaboration with E. Brun (DES), see [28]

Modi�ed power iteration method [28] with uncertainties:
∂tun + LXun = 1

kn−1
e�

FXun,

u0 = un−1,
BXun,

, kn
e�
(X) = kn−1

e�
(X)×

∫∫
u(x, tn,v, X)dxdv∫∫

u(x, tn−1,v, X)dxdv
.

Asymptotically as n×∆t → ∞, the solution un ≈ un−1 ≈ u∞ solves (3).

Need for additional numerical tools (stochastic power iteration):

The blue part is solved by application of MC-gPC at every iterations
The red part remains to be discretized
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Uncertain ke� computations
Work in collaboration with E. Brun (DES), see [28]

Modi�ed power iteration method [28] with uncertainties:
∂tun + LXun = 1

kn−1
e�

FXun,

u0 = un−1,
BXun,

, knew,k
e�

=

∫
kold,P
e�

(X)

∫∫
uP (x, tn,v, X)dxdv∫∫

uP (x, tn−1,v, X)dxdv
ϕk(X)dPX .

Asymptotically as n×∆t → ∞, the solution un ≈ un−1 ≈ u∞ solves (3).

Need for additional numerical tools (stochastic power iteration):

The blue part is solved by application of MC-gPC at every iterations
The red part is remapped onto the gPC basis
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The stochastic power iteration with MC-gPC, [28]
(main sketch)

begin
#initialisation of a population of particles
list_of_particles=sampleUncertainParticles(NMC )

set U0
old = 1

set U0
new = 1

set k0
e� = 1

for k ∈ {1, ..., P} do

Uk
old = 0

Uk
new = 0

kk
e� = 1

end
while iter < iter_max do

#Apply MC-gPC during time step [tn, tn + ∆t]

(Uk
new)k∈{0,..,P}=trackUncertainParticlesWithMC-gPC(list_of_particles, ∆t, k0

e�, ..., k
P
e�)

#build punctual uncertain values

(UP
new(Xg))g∈{1,..,NG}

=buildPunctualValues((Xg)g∈{1,..,NG}
, (Uk

new)k∈{0,...P})

(UP
old(Xg))g∈{1,..,NG}

=buildPunctualValues((Xg)g∈{1,..,NG}
, (Uk

old)k∈{0,...P})

(kP
e�(Xg))g∈{1,..,NG}

=buildPunctualValues((Xg)g∈{1,..,NG}
, (kk

e�)k∈{0,...P})
#update the gPC coe�cients of the eigenvalue
for k ∈ {0, ..., P} do

kk
e� ←

NG∑
g=1

k
P
e�(Xg) ×

UP
new(Xg)

UP
old

(Xg)
ϕk(Xg)wg

end
#update the old number of physical particles
for k ∈ {0, ..., P} do

Uk
old ← Uk

new
end
iter++

end

end
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Uncertain ke� computations
Work in collaboration with E. Brun (DES), see [28]

Uncertain ke� computations with uncertain σa, σs, σf , ν on UD2O-1-0-SL [30]
95% con�dence intervals on u 95% con�dence intervals on ke�
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=⇒ Gains of more than a factor ×10 with respect to ni-gPC on these benchmarks [28] p. 30/35



E�cient hybrid intrusive/non-intrusive computations
Once an intrusive code is at hand...

In this section, we would like to take few lines to discuss about what intrusive
uncertainty propagation codes (independently of the physics of interest) can bring:

� previous test-cases: we saw situations in which intrusiveness is worth it
(from ×2 to ×40 computational gains)

� Still, intrusiveness can be more or less costly in terms of development
(even if the modi�cations are simple, the veri�cation always takes time)

Having these points in mind, we would like to show that:

hybrid non-intrusive/intrusive simulations are at hand as soon as an intrusive
code is available

These hybrid computations are competitive w.r.t. a full non-intrusive
simulation.
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E�cient hybrid intrusive/non-intrusive computations
Once again, the previous 3D example...

Back to the previous 3D problem with the new reduced model

Assume that the developments are ready in order to take into account

the uncertainties on σt(X1), σs(X2),
but not yet the uncertainties on η(X3).

Then we can quite easily

run the MC-gPC solver to propagate the uncertainties with respect to X1, X2

several times, for several values of (Xi
3, wi)i∈{1,...,N} ∼ (X3, dPX3).

To know how in details see [26]
(intensive use of the orthonormality property of the (ϕk)k∈{0,...,P})
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The previous homogeneous uncertain con�guration
Back to the 3D problem

Comparisons of the mean and variance MC-gPC vs. hybrid ni-gPC /MC-gPC
=⇒ excellent agreement!

E[U ](x, t = 1) V[U ](x, t = 1)
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Now, the costs of each numerical strategies are given by
� new MC-gPC : cost = 1 × CPU time of 1 run = 1 × 1min 25s.
� ni-gPC : cost = 64 × CPU time of 1 run = 64 × 0min 54s = 58min 06s.
� hybrid : cost = 4 × CPU time of 1 run = 4 × 0min 58s = 3min 52s.

Gains:
� new MC-gPC : vs. ni-gPC × 41.0
� new MC-gPC : vs. hybrid ni-gPC / MC-gPC × 0.36 (loss)
� hybrid ni-gPC / MC-gPC : vs. ni-gPC × 15.0 p. 33/35



1 Motivations and objectives + the skeleton of an MC code

2 Non-intrusive applications and drawbacks in an MC context

3 Intrusive reduced modeling (sometimes, it is worth it)

4 Few simple test-cases
Comparisons, performance considerations
MC-gPC for ke� computations (work with E. Brun [28])
Hybrid intrusive/non-intrusive computations

5 Conclusion
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The MC-gPC solver for the uncertain transport equation
Summary

See also (things I do not have time to detail):

Spectral convergence w.r.t. P of the gPC reduced models in [22]
(fast convergence of the solution of the reduced model uP −→

P→∞
u)

Convergence of the MC-gPC scheme in [21]
(design of converging numerical schemes such that uP

NMC
−→

NMC→∞
uP )

(only simple modi�cations of an existing MC code are necessary)

(Test-cases up to 6D stochastic dimensions)

Applications to ke� computations in neutronics [28]
(design of a stochastic eigenvalue/eigenvector solver based on the material of this talk)

Applications to sti� nonlinear photonic problems [24]
(proof of the wellposedness of the gPC based reduced model)

Study of the numerical MC noise on the gPC coe�cients [25]
(MC noise comparisons MC-gPC vs. non-intrusive gPC on the coe�cients)

Improvements of MC-gPC [27]
(design of a new multigroup MC scheme for the gPC reduced model)

(less noisy, less sensitive to the curse of dimensionality but also less simple... ×4 faster than MC-gPC)

(+ some e�cient hybrid intrusive/non-intrusive applications) p. 35/35
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Uncertain photonic computations
An uncertain nonlinear sti� system [24]

We are interested in taking into account uncertainties on I, E solutions of

1

c
∂tI(x, t, ω,X) + ω · ∇I(x, t, ω,X) + σt(E(x, t,X), X)I(x, t, ω,X)

= σa(E(x, t,X), X)B(E(x, t,X)) + σs(E(x, t,X), X)

∫
I(x, t, ω

′
, X)dω′,

∂tE(x, t,X) = cσa(E(x, t,X), X)

∫ (
I(x, t, ω

′
, X) − B(E(x, t,X))

)
dω′,

X ∼ dPX .

(5)

Need for additional theoretical material (for wellposedness), see [24].

Uncertain photonics with uncertain σa, Cv
Tr T

mean Tr ni-ISMC
mean Tr ni-ISMC

mean Tr ISMC-gPCP=5
variance Tr ISMC-gPCP=5
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Gain ×20 for this problem, see [24] p. 23/35
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A homogeneous uncertain con�guration
Analytical solution for statistical observables

The solutions are given by

MU
1 (t) = E[U(t,X)] = 1

2U0e
−vσat

evσ̂st − e−vσ̂st

σ̂stv
,

MU
2 (t) = E[U2(t,X)] = 1

4U
2
0 e

−2vσat
e2vσ̂st − e−2vσ̂st

σ̂stv
,

V[U ](t) = MU
2 (t)− (MU

1 (t))2.

(6)

Convergence studies w.r.t. the # of points of the experimental design N :

non-intrusive NMC = 10
non-intrusive NMC = 20
non-intrusive NMC = 100

gPC intrusive MC scheme (NMC = NUQ
MC)

0.001
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0.1

1

1 10 100 1000 10000
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L
1
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e
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r

NUQ
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The error e for the UQ problem is now e = O( 1√
NMC

) (for this test-pb at least!)p. 25/35
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A two layered uncertain material: sensitivity analysis in 6D
Case presentation

The con�guration is the following:

Similar three �rst points (v = 1,...)

The material is composed of two layers of di�erent media, A and B with
DA = [0, 1

2 ] and DB = [ 12 , 1] such that DA ∪ DB = D = [0, 1].

Both media are pure, homogeneous and considered uncertain.

Each depends on three parameters (Xi)i∈{A,B} = (Xi
1, X

i
2, X

i
3)i∈{A,B} with

σt(x, t,X) =
∑

i∈{A,B}
[
σi
t + σ̂i

tX
i
1

]
1Di

(x), ∀x ∈ D, t ∈ R+,

σs(x, t, ω, ω
′, X) =

∑
i∈{A,B}

[
σi
s + σ̂i

sX
i
2

]
1Di

(x), ∀x ∈ D, t ∈ R+,

η(x, t,X) =
∑

i∈{A,B}
[
ηi + η̂iXi

3

]
1Di

(x), ∀x ∈ D, t ∈ R+,

(7)

(Xi
1, X

i
2, X

i
3)i∈{A,B} are independent uniformly distributed RVs on [−1, 1].

For the next computations, the mean quantities are set to
σA
t = 1.0, σA

s = 1.3, ηA = 1.0,
σB
t = 1.0, σB

s = 0.9, ηB = 1.0,
σ̂A
t = 0.4, σ̂A

s = 0.4, η̂A = 0.4,
σ̂B
t = 0.4, σ̂B

s = 0.4, η̂B = 0.4,

Statistical observables: mean, variance, Sobol indices as before

For this test-case, a non-intrusive gPC reference is too costly p. 27/35



A two layered uncertain material: sensitivity analysis in 6D
Mean, variance and setting of the problem

Mean and Variance of U(x, t = 1, X)

MC-i-gPC mean
MC-i-gPC variance
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x

Run 1.024× 109 particles, (P + 1)6 = 729 on 1024 proc. in 750s.

ni-gPC would need, same accuracies and restitution times, 131072 proc.

New problem: suppose now we want the variance to be lesser that 0.05 ∀x ∈ D
=⇒ How should we work on the uncertain parameters?

=⇒ On which ones?

=⇒ Of how much should we reduce their respective uncertainties? p. 28/35



A two layered uncertain material: sensitivity analysis in 6D
Total and �rst order Sobol indices

Stot1 [U](x, t = 1) vs. S11[U](x, t = 1) Stot4 [U](x, t = 1) vs. S14[U](x, t = 1)
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A two layered uncertain material: sensitivity analysis in 6D
Comparison: initial con�guration vs. reduced uncertainty one

By running several calculations with decreasing variances on σA
t and σA

s we get:

E[U](x, t = 1) and V[U](x, t = 1)

σ̂A
t = 0.40, σ̂A

s = 0.40 (old)

σ̂A
t = 0.15, σ̂A

s = 0.15 (new)

V[U](x, t = 1) × Stoti [U](x, t = 1), i ∈ {1, .., 6}
σ̂A
t = 0.40, σ̂A

s = 0.40 (old)

σ̂A
t = 0.15, σ̂A

s = 0.15 (new)
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Answer to the problem:
Enough reducing the uncertainties on X1, X2 of only a factor 3.

=⇒ the study has been made possible by the new scheme.
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The previous homogeneous uncertain con�guration
Back to the analytical solution for statistical observables (variance)

Back to the previous convergence study with the new reduced model w.r.t. P :

σt = 1, σs = 0.8, σ̂s = 0.3 same with a numerical resolution
exp(−(0.19 1

P 2 + 1
P + 1))

gPC
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gPC reduced model from the analytical solution

gPC reduced model from a numerical solver

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 2 4 6 8 10 12 14

L
2
-e
rr
o
r
o
n
th
e
va
ri
a
n
ce

P

Spectral convergence is recovered also in practice (youpi!)

The previous mathematical analysis is probably not optimal
(we here obtain even faster convergence rates!)

This is encouraging once an MC discretization will be introduced.
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The previous homogeneous uncertain con�guration
Back to the analytical solution for statistical observables (variance)

Back to the previous convergence study with the new reduced model w.r.t. P :

σt = 1, σs = 0.8, σ̂s = 0.3 σt = 1, σs = 0.5, σ̂s = 0.3
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Spectral convergence is recovered also in practice (youpi!)

The previous mathematical analysis is probably not optimal
(we here obtain even faster convergence rates!)

This is encouraging once an MC discretization will be introduced.
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The previous homogeneous uncertain con�guration
Back to the analytical solution for statistical observables (variance)

Spectral convergence w.r.t. P and MC resolution:

σt = 1, σs = 0.8, σ̂s = 0.3

T=0.25
T=0.50
T=0.75

MC T=0.25
MC T=0.50
MC T=0.751e-14
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Spectral convergence is recovered also in practice ∀ times of interest T

The gPC accuracy is below the MC error for relatively small P
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7

t
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

E[U ](x, t),V[U ](x, t) and realisations of U(x, t,X) for P = 7
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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