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Motivations and objectives + the skeleton of an MC code
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= Motivations (and few notations
cea ( )

A very general class of problem

We are interested in the resolution of the linear Boltzmann equation

Ou(x,t,v) + v - Vu(x,t,v) = —vo(x,v)u(x,t,v)
+ [ vos(x, v, v )u(x,t,v")dv'.
Few constraints for the resolution:
m Dimension 7 = 3(x) 4 1(¢) + 3(v) = use of Monte-Carlo (MC).
= Need for accurate transient/late time (¢*): U(x,t*) = [u(x,t*,v)dv.

In this talk, we are interested in: Uncertainty Analysis
m Assume some parameters X € R? in the above PDE are uncertain
= General dependence w.r.t. X of (04)ae{s,}. %o, boundary conditions etc.

m We model them thanks to random variables of probability measure X ~ dPx

We need to solve a stochastic PDE in order to propagate uncertainties
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~5=  The uncertain linear Boltzmann equation
% q

A brief presentation of what is in [21]

We are interested in the resolution of the uncertain linear Boltzmann equation
Opu(x,t, v, X) + v - Vu(x, t,v, X) + vor(x, v, X)u(x, t, v, X)
= [ wvos(x,v, v, X)u(x,t,v', X)dv/,

where X € R¥ is a random variable of dimension @) sampled from dPy.
Few constraints for the resolution:

m7+Q=3x)+1(t)+3(v) + Q(X) (independent) dimensions.
® Statistics of U(x,t*, X) = [ u(x,t*, v, X)dv

About the resolution of the above stochastic PDE:

m Once a simulation device at hand to approximate the solution, the most
straightforward uncertainty propagation method is the non-intrusive one.

= In our codes, the transport equation is often solved using an MC scheme.
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Now, in general, for our application, an MC scheme is used

General properties of MC resolutions

Inconditionally stable scheme: the time step can be the time of interest t*.
(MC schemes scale weakly in a replication domain context if At is high enough)

Positive scheme.
Converging scheme (Law of large number, see Lapeyre-Pardoux-Sentis)
Asymptotically, with u,(x,t,v) = w,(t)dx(x,(t))dv (Vp(t)), we have

k=1

Nuveo
Nye <Z up(x,t,v) — u(x,t,v)) £, G(0,0mc),

(Central Limit theorem, see Lapeyre-Pardoux-Sentis [17]).

. . . . . 1
We will abusively but concisely write the error is en,,, = O < )

VNuce

The performance of the MC schemes can be studied by analyzing oumc.
Several schemes: analog, non-analog, with variance reduction technics...
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cea Algorithmic sketch for the non-analog MC scheme

(Backward formulation with constant per cell cross-sections)

set u(x,t,v) =0

forp € {1,..., Npsyo } do
setsp =t hS will be the life time of particle p
set Xp = X
set Vp =V
o — 1
set wp = NMC

while 5, > 0 and wp > 0 do
Sample 7 by inversing the cdf of an exponential law = = — 2 ([0:1D)_
Tpos(Xpvp
if 7 > sp then
#move the particle p
Xp= =vVpsp,
Hset the life time of particle p to zero:
sp =0
Hchange its weight
wpx — e~ v7aCep.vp)ep
#tally the contribution of particle p
u(x,t,v)+ = wp X uo(xP, Vp)

end

else
#move the particle p
xp —_ = VpT,
#ichange the weight of the particle
wpx = e~ voa(xp,vp)T
Sample the velocity V/ sampled from Py (xp, v/, vp)dv’
vp =V’
#set the life time of particle p to:
sp— =T

end

end
end
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Non-intrusive applications and drawbacks in an MC context
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Non-intrusive method for uncertainty propagation
y Propag

Based on a point-wise discretisation of (X,dPx)

X is an arbitrary random variable of probability measure dPx.
Discretization of (X,dPx) by a quadrature with N points (X;,w;)cq1,...,n}-
N independent solutions at points (X;, w;):

(u(x,t,v, X;),w;)ieq1,....n}, solutions of your favorite problem

Estimation of the statistical quantities of interest by numerical integration:

EU](x,f) = / / u(x, 1, v, X)dvdPy

E[U2(x,t) = / ( / u(x,t,v,X)dv)zd'PX,

VIU](x,1) = E[U?](x,t) — (E[U](x,1))*,

Other examples of interesting statistical quantities will be given later
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Non-intrusive method for uncertainty propagation
y Propag

Based on a point-wise discretisation of (X,dPx)

X is an arbitrary random variable of probability measure dPx.
Discretization of (X,dPx) by a quadrature with N points (X;,w;)cq1,...,n}-
N independent runs of a black box code at points (X;, w;):

(u(x,t,v, X;),w;)ieq1,....n}, solutions of your favorite problem
Estimation of the statistical quantities of interest by numerical integration:

N
E[U] (X7 t) = Z wiU(Xa t: Xl) + O(Nﬁ)7
k 1

E[U?](x,t) sz (x,t, X;) + O(NP),

VIU](x,1) [UN}(X t) — (E[UN](x,1))* + O(NP),

Other examples of interesting statistical quantities will be given later
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Non-intrusive method for uncertainty propagation
y Propag

Based on a point-wise discretisation of (X,dPx)

X is an arbitrary random variable of probability measure dPx.
Discretization of (X,dPx) by a quadrature with N points (X;, w;)ic(1,...N}-
N independent runs of a black box code at points (X, w;):

(ua(x,t,v, Xi), wi)icq1,....N}, approximations ua = u + O(A)

Estimation of the statistical quantities of interest by numerical integration:

EU)(x,t) =3 wila(x,t, X;) + O(N) + O(A),

k=1
N

E[U%)(x,t) =Y wlUX(xt X;) + O(N?) +O(A),
VU, 1) = E[U a)(0.) — (E[Un.a)(x.1)2 + O(N) + O(A),

Other examples of interesting statistical quantities will be given later
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22 A homogeneous uncertain configuration

Analytical solution for statistical observables

m The error e for the UQ problem, on any statistical observable, is

ex= 0 +  ONP
—— ——
deterministic solver  uncertainty integration
m Illustration on a homogeneous uncertain problem for which an analytical
solution for the variance can be built (see [21])

m Convergence studies w.r.t. to A and N for two different strategies:
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== |Interpretation of the previous non-intrusive results
CeA (i i

(using an MC scheme for the deterministic resolution)

m When running N times the MC code:
MC particles for (x,t,v) and the experimental design for X are tensorised.

(We need to deal with N(X) x Nyro(x,t,v) MC particles)

m MC methods are integration methods supposed to avoid such tensorisation!
(Is it possible to have only N for the whole set of variables (x,t, v, X)?7)

= Main difficulty: as always, finding the relevant linearisation
= example of the equation satisfied by the second order moment
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Equation satisfied by the second moment

The need for a relevant linearisation

m The simplest statistical observable is the variance:
V[u](x,t,v) = Ma(x,t,v) — M?(x,t,v) with

Ms(x,t,v) :/uz(x,t,v,X)d'PX Z/mQ(x,t,v,X)d'PX.
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Equation satisfied by the second moment

The need for a relevant linearisation

m The equation satisfied by u is

ou(x,t,v, X))+ v - Vu(x,t,v,X) = —vo(x,v, X)u(x,t,v, X)
—|—/UO’S(X,V,V/,X)u(X,t,VI,X)dV/,

and is linear so why do we need a relevant linearisation?
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Equation satisfied by the second moment

The need for a relevant linearisation

m Let us multiply the transport equation by u to obtain

8t“72(x,t,v,X) +v- V%(x, t,v, X) = —voy(x, v, X )u?(x,t, v, X)
—‘ru(X,t,V,X)/UUS(X,V,V/,X)U,(X,t,V/,X)dV/,

in which it remains to make u? = ms appear.
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Equation satisfied by the second moment

The need for a relevant linearisation

m If u is solution of the uncertain transport equation, quantity ms is solution of

Oma(x,t, v, X) +v-Vma(x,t,v,X) = —2vo(x, v, X)ma(x,t, v, X)
~¢—2u(x,t,v,X)/Uors(x,v,v',X)u(x,t,v’,X)dv'7

which is nonlinear in general (i.e. if o5 # 0).
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Equation satisfied by the second moment

The need for a relevant linearisation

= Nonlinearity demands a splitting/linearisation hypothesis.

Oma(x,t, v, X) +v-Vma(x,t,v,X) = —2v04(x, v, X)ma(x,t,v, X)
+2u(x,t,v,X)/vas(x,v,v’,X)u(x,t,v',X)dv',

which is nonlinear in general (i.e. if o5 # 0).

m The most common linearisation strategies for this type of quadratic operator:
— Nanbu-like method [6] (O(At) splitting)
(would need small time steps in very collisional media)
— Bird-like method [4] (O(At) splitting).
(would also need small time steps in some regimes)
— Posttreatment of a count rate file from an analog resolution [7] O(At).
(explosion of the 1/O and file size close to criticity)
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Equation satisfied by the second moment

The need for a relevant linearisation

= Nonlinearity demands a splitting/linearisation hypothesis.

Oma(x,t, v, X) +v-Vma(x,t,v,X) = —2v04(x, v, X)ma(x,t,v, X)
+2u(x,t,v,X)/vas(x,v,v’,X)u(x,t,v',X)dv',

which is nonlinear in general (i.e. if o5 # 0).
m The most common linearisation strategies for this type of quadratic operator:

— Nanbu-like method [6] (O(At) splitting)
(would need small time steps in very collisional media)

— Bird-like method [4] (O(At) splitting).
(would also need small time steps in some regimes)

— Posttreatment of a count rate file from an analog resolution [7] O(At).
(explosion of the 1/O and file size close to criticity)

— AND we need a linearisation working for other statistical quantities too.
We here only suggest a new linearisation (with respect to P introduced later).
(see [21, 22, 23, 24, 28, 9, 20] for other physical applications)
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Intrusive reduced modeling (sometimes, it is worth it)
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A gPC-based linearisation

(being intrusive is sometimes very efficient)

m Convergence theorem for generalised Polynomial Chaos [33, 8, 35, 32, 12]
(also called stochastic finite elements in the literature [31, 13, 11, 34, 14])

Let X be an arbitrary r.v. of probability measure dPx (),
(¢k ) ken is the basis of orthonormal polynomials with respect to dPx(z)

Let w(X) be an unknown random variable with /u2(X)d73X < 09,

P
then [ up(X) = 3 upei(X) P% u(X)
k=0

, where uy, = /u(X)(ﬁk(X)d’PX.

= Idea: compute the coefficients (ux)ieqo,..., py during the MC resolution

m Of course, one can obtain the coefficients non-intrusively [15, 10, 19, 29, 18]

= How do we use that convergence theorem?
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A gPC-based reduced model for uncertain transport

(order P is the new linearisation parameter... Looks like P,, models...)

Let us build a gPC based reduced model for the uncertain transport equation

m Let us defined the gPC developpement
(x,t,v, X) Zuk X, t, V)i (X) with ug(x,t,v) = /u(x7t7v7X)qbk(X)d73x.

m Let us plug u” in the transport equation and perform a Galerkin projection to get

8tuo —|—V . quo = —’U/ (O't Z uquk) ¢50de + U// ((0'5 Z ukqﬁk) ¢0d7)x>

k<P k<P
Oup +v-Vxup = —v/ (Ut Z uk¢k> ¢opdPx + v// ((05 Z Uk¢k) ¢PdPX)
k<P k<P

m The reduced model is still linear = it can be solved by an MC scheme.

® In fact, it can be solved by slightly modifying an already existing MC code [21].
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A gPC-based reduced model for uncertain transport

Spectral convergence with respect to P

In [22], proof of spectral convergence as P — oo for the gPC reduced model:

P

m Let us defined the gPC developpement u” = Zuqqﬁq with ug = /ud)qdpx.
q=0

m Define the space of functions

H*(©) = {u € Lé‘ /f:(qﬁ”)?dpx < oo}.
=0

m Assume bounds on the cross-sections

[vot]|Loe(zx@) = Bt <00, [[vos|lLoe(zx0) = Bs < 0. (1)

Theorem (Convergence of the P—truncated gPC reduced model approximation)

Spectral accuracy holds in the following sense: for all k € N such that u € H*(©), there
exists a constant Dy, such that Vt € [0, T

2 2

Hu(t) -~ uP(t)‘

< 2z HUO _ ué)‘
L2(Z,0)

D
+2(Zs + Zo)tlluill2z.0) P’;) :

L2(Z,0) B



C@ZI The gPC intrusive non-analog MC scheme as in [21]

(Backward formulation with constant per cell cross-sections)

for k € {0, ..., P} do
\ set up (x,t,v) =0

end

forp € {1,..., Nps
set s, = t #this will be the remaining life time of particle p, it must go down to zero (backward)
set Xp =X
set Vp =V
set wy = ———

P~ Nyc

set Xp =

X with X sampled from the probability measure d7 .
while sp > 0 and wp > 0 do

Sample 7 by inversing the cdf of an exponential law 7 = — — (U ([0.1]))

Vo s (Xp,vpsXp)
if 7> sp then

Xp— = Vpsp.
sp =0
wpX = Efvaa(xp,vp,Xp)sp
tally the contribution of particle p
Iy th b f I
for k € {0,..., P} do
| up (et v)+ = wp X ug(xp, vp, Xp)op(Xp)
end
end
else
Xp— = VpT.
wpx = e~ voa(xp,vp, Xp)T
vp =V’ with V’ sampled from Ps (xp, v/, vp, Xp)dv’
#set the life time of particle p to:

sp— =T

end

end

—> A converging MC scheme with simple modifications of an existing MC implementation [21]
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C@Zi The previous homogeneous uncertain configuration

Back to the analytical solution for statistical observables (variance)

m Back to the previous convergence study with the new reduced model
1 T T T

on-intr

ﬂrusive Mr(‘f scheme
0.1F \\__‘ ]

log of the L'—norm of the error

0.001 L L L
1 10 100 1000 10000

AUQ
Nué

m With the new MC-gPC scheme: NAZ% = Nuyc.
m The truncation order for this test-case is P = 1.

m The error ¢ is now ¢ = O <\/N1W> (for this test-pb at least!)

but surely depends also more thoroughly on P for other problems...
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Few simple test-cases
Comparisons, performance considerations
MC-gPC for ke computations (work with E. Brun [28])
Hybrid intrusive/non-intrusive computations
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A first simple configuration [21]

equilibrium uncertain test problem

O+ vwVu = —vog(X)u+ [ vos(X)udw',
u(z,0,v) = ugp(z) = 61(x).
We assume X ~ U([—1,1]) with 045(X) =7, + 6,X with 5, =1 and 6, = 0.99.
Mean and variance of U(z,t = 0., X)

120 T T T T T T — T 1
: : : : : realisations
B al
100 ¢ R
1 0.5
80 g
60 P TN B — 0
40
20
O N A | N N S S O
0 02 04 06 08 1 12 14 16 18 2
X
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

120

100

80

60

t=20.0

40

20

E[U](x,t), V[U](z,t) and realisations of U(x,t, X) for P =7

T T T T T T T T T 1
: : : : realisations
‘ ‘ ‘ ‘ ‘ Vlean
"""" poootreesmreeeereeeopeoo 0 Varlance =
‘ ‘ ‘ ‘ } ‘ : 4 0.5
; 0
§ 1-0.5
0 02 04 12 14 16 1.8 9
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U)(z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

25 T T T T T T T T 0.045
: : : : ‘ realisations
! ! ! ! Mean 1 0.04
o0 b Lo Lo L. 4 Variance = |
o T 0,035
: : : : : : : © 1 0.03
Il I T g0z
S _
|| 10 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 002
‘ ‘ ‘ ‘ : ‘ ‘ ‘ ‘ 1 0.015
] e I 11 e L
oy s 70005
0 I I I I I I I I 0
0 02 04 06 08 1 12 14 16 18 2
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

16 T T T T T T T 0.045
; : : : realisations
14 - b e SRR & - Mean = 0.04
o . Variance = |
12 oo e 0035
L R R (| RS Ot S IO
o gbedoi ] 0020
< 1 0.02
Il T | 1 | e
* ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ + 1 0.015
i I T | H | IR S A
SR R AR | H | I R WU
0 I I I I i I I I I 0
0 02 04 06 08 1 12 14 16 18 2
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

12 T T T T T T 1.6 o T T 0.05
o o IS%M(C);S 1 0.045
V(TLH&HC:e _ 1 004

1 0.035

: : : - 003
BERRRE R R 0.025
: : : : 1 0.02
LT 40015
1 0.01
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0
0 02 04 06 08 1 12 14 16 18 2
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C@ZI Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

9 T T T T 0.08
: : : : realisations
8 - Mean 3 0.07
,,,,,, . Variance =/ |
[ R G
6 R D D 4 005
N R | B N | e e -
<t |
s yboi SR 1 0.04
. 1 0.03
= 3 . T S CT O '
Y NN SRS | F K | | SO U .....4 0.02
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0 12 14 16 1.8 2
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

8 T 16 t" T 01
realisations
7 Mean 3 0.09
\{ananpe i 0.08
gbo e o .10
: : : : : : : : 1 0.07
] Y NN FRE R Y
g 4 """ """ """ - 0.05
s e 00
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

7 1 1 1 1 x ~ T T 0.12
: : : : : realisations
6 Mean |
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

6 1 1 1 ' 1 — ~ 0.09
: : : : realisations
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17

4 1 1 1 1 x " iation T 0.1
: : : : rdplisations
35 - b R o Mean 3 0.09
. . . . Vamanqe* | 008
P T | Y | C o L] .
! ! ! ! ! ! ! ! 1 0.07
25l ] g
o2l 0.05
|1 E o\ 0o
‘ ‘ ‘ ‘ ‘ ‘ 4 0.03
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 9 0.02
R 'Y AR VAN . W0
0 [ [ [ i [ [ [ 0
0 02 04 06 08 1 12 14 16 1.8 2

X

p. 20/35



Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
T 0.12
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t=14

Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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t=1.5

Uncertain linear Boltzmann equation
(with uncertain cross-section, no absorption)
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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Uncertain linear Boltzmann equation

(with uncertain cross-section, no absorption)

E[U](z,t),V[U](x,t) and realisations of U(z,t, X) for P =17
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C@_a Comparisons MC-gPC vs. classical non-intrusive gPC [21]

Monokinetic monodimensional (QQ = 1) uncertain problem

For the results obtained with the MC-gPC solver:
m Non-intrusive gPC reference obtained for Ny, = 3.2 x 108, Ng, = 4, P = 2.
m taking Nysc = 3.2 x 103, P = 2 = perfect agreement with the reference.

m Performance considerations:

— ni-gPC cost: Ngr xaveraged CPU time of 1 run~ 4 x 85.0s.
— MC-gPC cost: 1xeffective CPU time of the run=1 x 86.6s.
MC-gPC is ~ 4 times faster than the non-intrusive application.

0.1
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p . Application to a sensitivity analysis problem
C@a Pp y ysis p

Mean, variance and total Sobol indices

m Sobol's indices: powerful, reliable but costly tool for sensitivity analysis [16]

Needs some a priori Main effects (1%t order) Al effects (at all order)
knowledge ' — -
Main and total effects Visualization of main effects

ComplexityRegularity Screening Variance
of the model o
decomposition
Non
monotonie Classification Sobol Sobol |
discontinuqus Morris + mtamodel | | quasi-MC Monte Carlo | |
Nen Metamodel
i FAST and
ot Statistioal; | SMOGIING! | oErAST
continuous| whte /
Monotonic| /
with ‘ Fract. fact RIV /

i Rill design |} _desian /
interactiong gt /
Woratonio| S e
 without Rark régression /
interaction /

Screening by group J
Linear 1% Supershturated e . '
degre design ne-At-a-Time Linear rpgression /ﬂ/ -
~ lumber
0 a2 d 2d 10d ““100d 1000g  ©of model
——— evaluations

m Sensitivity analysis test-problem in the following slide:
— A 3 — D problem with uncertainties affecting o5, 04,7
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Sensitivity analysis in 3D stochastic dimension

Case presentation

The configuration is the following:

m Set-up:

wo(@,w, X) =1

Domain D = [0, 1]

X = (X1, X5, Xy) independent uniform on [~1, 1]

o(X) = o(X1) =7, + 6,.Xy 7, =1.0,6, =04

0:(X) = 01(X2) =7, + 6.X2 7, =09.6,=04
wall — -

N(X) =n(X3) =7 +1X3 n=10,7=04

Monokinetic problem: v =1

AL HLTANAREAREARERNRANANA NSNS

x 1

=3

m The statistical outputs are the mean E[U], variance V[U] and Sobol indices
S[U] profiles of U(z,t, X) = [u(z,t,w,X)dw at time ¢ = 1.0.
For this test-case, a non-intrusive gPC reference can still be obtained o, 23/35



C@a Sensitivity analysis in 3D stochastic dimension
Mean, variance and total Sobol indices

:
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— Perfect agreement with the MC-gPC scheme and the references. s
o



Sensitivity analysis in 3D stochastic dimension

Performance considerations

Perfect agreement non-intrusive gPC vs. MC-gPC on every statistical observables
Few characteristics:

m ni-gPC : N&, =43 = 64 points with (P 4+ 1)? = (2 + 1)3 = 27 coefficients.
= MC-gPC: (P+1)9 = (2+1)3 = 27 coefficients.

same truncation order P ensures the same accuracy.

Performance considerations:

m ni-gPC  cost: NgL = 43 xaveraged CPU time of 1 run= 64 x 3min52s.

m MC-gPC cost: 1xeffective CPU time of the run=1 x 4min50s.
It is ~ 50 times faster than the non-intrusive application.

m But the cost of a MC-gPC run is &~ 1.26x the cost of a non-intrusive one.

= Something to dig here? Additional cost comes from the tallying phase [21]

The tallying phase is the only one sensitive to the dimension Q.
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The MC-gPC solver for the uncertain transport equation
g port eq

Short summary on this topic

On the new MC-gPC scheme (allowing to characterise dx):
m Spectral convergence as P grows of the gPC based reduced model in [22]

m Convergence with respect to Njs¢ of the MC-gPC solver in [21] for fixed P
(many other properties are studied in [21, 22])
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The MC-gPC solver for the uncertain transport equation
g port eq

Short summary on this topic

On the new MC-gPC scheme (allowing to characterise dx):
m Spectral convergence as P grows of the gPC based reduced model in [22]

m Convergence with respect to Njs¢ of the MC-gPC solver in [21] for fixed P
(many other properties are studied in [21, 22])

Let us focus on performance considerations
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The MC-gPC solver for the uncertain transport equation
g port eq

Short summary on this topic

On the new MC-gPC scheme (allowing to characterise dx):
m Spectral convergence as P grows of the gPC based reduced model in [22]

m Convergence with respect to Njs¢ of the MC-gPC solver in [21] for fixed P
(many other properties are studied in [21, 22])

MC-gPC (1 run/Nys¢ particles) vs. non-intrusive gPC (N runs/ Ny particles)

p. 26/35



The MC-gPC solver for the uncertain transport equation
g port eq

Short summary on this topic

On the new MC-gPC scheme (allowing to characterise dx):
m Spectral convergence as P grows of the gPC based reduced model in [22]

m Convergence with respect to Njs¢ of the MC-gPC solver in [21] for fixed P
(many other properties are studied in [21, 22])

MC-gPC allows important gains in comparison to non-intrusive gPC
(accelerations between x4 to more that x50, see [21])
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The MC-gPC solver for the uncertain transport equation
g Y q

Short summary on this topic

On the new MC-gPC scheme (allowing to characterise dx):
m Spectral convergence as P grows of the gPC based reduced model in [22]

m Convergence with respect to Njs¢ of the MC-gPC solver in [21] for fixed P
(many other properties are studied in [21, 22])

But the linear Boltzmann equation is scarcely used as such
(is MC-gPC still efficient on kesr computations [28]? Coupled with nonlinear physics [24]7)

p. 26/35



5~ Uncertain ke computations
Cea

Work in collaboration with E. Brun (DES), see [28]

B We are interested in taking into account uncertainties on kef , w such that

v Vyu(x,v) + vo(x, v)u(x, v) = vos(x,Vv) / Pqo(x,v - v )u(x, v )dv’,
v (%, ‘I’C)Uf(xvv) Pr(x,v - v/)u(x,v/)dv/, 2
eff
u(x,v) =up(v), x€9D, ¥ -ns <0, with|v|=rw0.

B The above equation can be more concisely rewritten as

_ 1
{ Lu = ke“Fu, (3)

Bu.

= we are looking for u the fixed point of the above equation

m The power iteration method [5] consists in choosing the n'" iteration of the algorithm as

Fun—l

K 1 ) d d

where kfjy = k! ffvffv e
D Vu" x, v)dxdv

Lun —

(4)
Bu™,

Asymptotically as n — oo, the solution u™ ~ u"~! ~ u*> solves (3).
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~—= Uncertain ke computations
cea

Work in collaboration with E. Brun (DES), see [28]

B We are interested in taking into account uncertainties on kef , w such that

v Vyu(x,v) + vo(x, v)u(x, v) = vos(x,Vv) / Pqo(x,v - v )u(x, v )dv’,

+ v (%, ‘I’C)Uf (x,v) Pr(x,v - v/)u(x’ v/)dv/, 2
eff
u(x,v) =up(v), x€9D, ¥ -ns <0, with|v|=rw0.

B The above equation can be more concisely rewritten as

_ 1
{ Lu = ke“Fu, (3)
Bu.

= we are looking for u the fixed point of the above equation

®m Modified power iteration method [28]:

n n _ 1 n
ou™ + Lu™ = knleu ,
off
up = w1 where kJi; =

b
n
Bu™,

_ ot I Jyul v)dxdv
eff fD IS u(x7 tn— 1,V)dxdv

(4)
Asymptotically as n x At — oo, the solution u™ ~ u™~! ~ u™ solves (3).
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22 Uncertain ket computations

Work in collaboration with E. Brun (DES), see [28]

m Modified power iteration method [28] with uncertainties:

Ou™ + LXyn = knl—l I,;vXu'n,7
eff 7 n—1
1, k3 (X) = k2 (X)

» Jf u(x,t", v, X)dxdv
JJ u(x, tn=1 v X)dxdv’

ug = u

BXqyn,

Asymptotically as n x At — oo, the solution u™ ~ u™~! ~ u> solves (3).
m Need for additional numerical tools (stochastic power iteration):

— The blue part is solved by application of MC-gPC at every iterations
— The red part remains to be discretized
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22 Uncertain ket computations

Work in collaboration with E. Brun (DES), see [28]

m Modified power iteration method [28] with uncertainties:

Gtu" + LXun — nl_ l;vXun7
o kar anew, /kold P ff u” (%, 1", v, X )dxdv S (X)dPx
%OX:: ’ r Rete eff juP(x,t”*l,v,X)dxdv |
U

Asymptotically as n x At — oo, the solution u™ ~ u™~! ~ u> solves (3).
m Need for additional numerical tools (stochastic power iteration):

— The blue part is solved by application of MC-gPC at every iterations
— The red part is remapped onto the gPC basis

p. 28/35



The stochastic power iteration with MC-gPC, [28]

Cea (main sketch)

begin
#initialisation of a population of particles
|ist70i)7particles:sampleUncertainParticles(NMC)
set U%Id =1
set USew =1
set kdp = 1
for k € {1,..., P} do
ko _
Uold =
ko
UlgeW =0
Kko=1
end
while jter < iter_max do
#Apply MC-gPC during time step [t™ ™ + At]
(UK, keqo,.., py=trackUncertainParticlesWithMC-gPC(list_of _particles, At, kG, ..., kX
_of_
#build punctual uncertain values
P —bui k
(U (Xa))ge(1,..,N¢ y=buildPunctualValues ((Xg) g e (1, N }» (U ke{0,... P})

NGt Widkeqo,...pY)

(Uopid(Xg))ge{l)nyNG}:buildPunctualValues((Xg)ge(L

P —buil K

k(X)) geq1,.., N y=builPunctualValues (X o) g e (1, N} (Bl keqo,...P})
#update the gPC coefficients of the eigenvalue

for k € {0, ..., P} do
Ng P
Upew (Xg)
k P new (Xg
k= 20 Feff(Xg) X —5 K (Xglwg

end
#update the old number of physical particles
for k € {0,..., P} do
| vk~ Uk
old new
end
iter++
end
p. 29/35
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) Uncertain ke computations
Cea

Work in collaboration with E. Brun (DES), see [28]

B Uncertain ks computations with uncertain o4, 05,05, v on UD20-1-0-SL [30]

95% confidence intervals on u 95% confidence intervals on kg
18 — — — T T 18 o8 ! H ! rol mean =——
Jnf (8 106 oo 7 (ean 1
16F + P heat m— 1 1.6 ‘ : : : o (036
104 === B
e 102 foe oo
=412 1 4
q1 0.98 - -
1o 096 B
0ot oo i
1 06
092 ot B
a0 i i i i
09
0 50 100 150 200 250
0.2 t
10

B UD20-H20(1)-1-0-SL problem [30], uncertain interface UD20/H20

mean and variance of u 95% confidence intervals on ke
16 T T T T : 0.0025 Lot T T T T i i T T
< realisations . ; ; ; ; ; H i
14 0.99 —
= 0.002
1.2 - 0.98 -
. 0.97 .
! = 0.0015 1
0.96 —
0.8
0.95 -
0.6 -~ oot 0.94 T
0.4 - 0.93
) = 0.0005 0.92 i
0.2 -
091 i i i i i I
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Gains of more than a factor x 10 with respect to ni-gPC on these benchmarks [28] p. 30/35



za Efficient hybrid intrusive/non-intrusive computations

— Once an intrusive code is at hand...

In this section, we would like to take few lines to discuss about what intrusive
uncertainty propagation codes (independently of the physics of interest) can bring:

previous test-cases: we saw situations in which intrusiveness is worth it
(from x2 to x40 computational gains)
Still, intrusiveness can be more or less costly in terms of development
(even if the modifications are simple, the verification always takes time)
Having these points in mind, we would like to show that:

m hybrid non-intrusive/intrusive simulations are at hand as soon as an intrusive
code is available

= These hybrid computations are competitive w.r.t. a full non-intrusive
simulation.
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. Efficient hybrid intrusive /non-intrusive computations
Cea y / g

Once again, the previous 3D example...

m Back to the previous 3D problem with the new reduced model
= Assume that the developments are ready in order to take into account

— the uncertainties on 0¢(X1), 05(X2),
— but not yet the uncertainties on 7(X3).

m Then we can quite easily
— run the MC-gPC solver to propagate the uncertainties with respect to X1, X»
— several times, for several values of (X3, wi)icq1,....n} ~ (X3,dPx;).

m To know how in details see [26]
(intensive use of the orthonormality property of the (¢x)ieqo,...,P})
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"Cea The previous homogeneous uncertain configuration

Back to the 3D problem

m Comparisons of the mean and variance MC-gPC vs. hybrid ni-gPC /MC-gPC
= excellent agreement!

E[U](z,t = 1)

1 ' ' ! T 0.11
reference ME-gPC ——
hybrid nigPC/MCEPC % "

0.09
0.08
0.07
b 0.06
0.05
0.04
0.03
0.02
0.01

L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x x

0.4 L L L L L L L L

= Now, the costs of each numerical strategies are given by

- new MC-gPC:  cost = 1 X CPU time of 1 run =1 x 1 min 25s.

- ni-gPC : cost = 64 X CPU time of 1 run = 64 X 0 min 54s = 58 min 06s.

- hybrid : cost = 4 X CPU time of 1 run =4 X 0min 58s = 3 min 52s.
m Gains:

- new MC-gPC T vs. ni-gPC X 41.0

- new MC-gPC vs.  hybrid ni-gPC / MC-gPC  x  0.36  (loss)

—  hybrid ni-gPC / MC-gPC  :  vs. ni-gPC x 150 b. 33/35



Motivations and objectives + the skeleton of an MC code
Non-intrusive applications and drawbacks in an MC context
Intrusive reduced modeling (sometimes, it is worth it)

Few simple test-cases
Comparisons, performance considerations
MC-gPC for ket computations (work with E. Brun [28])
Hybrid intrusive/non-intrusive computations

Conclusion
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The MC-gPC solver for the uncertain transport equation

Summary

See also (things | do not have time to detail):

Spectral convergence w.r.t. P of the gPC reduced models in [22]

(fast convergence of the solution of the reduced model u” = u)
— 00

Convergence of the MC-gPC scheme in [21]

(design of converging numerical schemes such that uﬁMc NM?>00 uP)
(only simple modifications of an existing MC code are necessary)
(Test-cases up to 6D stochastic dimensions)

Applications to kes computations in neutronics [28]
(design of a stochastic eigenvalue/eigenvector solver based on the material of this talk)
Applications to stiff nonlinear photonic problems [24]

(proof of the wellposedness of the gPC based reduced model)

Study of the numerical MC noise on the gPC coefficients [25]

(MC noise comparisons MC-gPC vs. non-intrusive gPC on the coefficients)

Improvements of MC-gPC [27]
(design of a new multigroup MC scheme for the gPC reduced model)
(less noisy, less sensitive to the curse of dimensionality but also less simple... x4 faster than MC-gPC)

(+ some efficient hybrid intrusive/non-intrusive applications) p. 35/35
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@ Some uncertain photonic applications: MC-gPC combined to ISMC
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p . Uncertain photonic computations
cea P ;

An uncertain nonlinear stiff system [24]

m We are interested in taking into account uncertainties on I, E solutions of
éatl(m,t,w,X) 4w VI(z,t,w, X)+ ot(E(z,t,X), X)I(z,t,w, X)
=o04(E(z,t,X), X)B(E(z,t, X)) + 0s(E(z, t, X), X) /I(z,t,w’,x)dw’, ®)
WE(z,t,X) = coq(E(z,t, X), X) / (I(z,t, 0", X) — B(E(z,t,X))) dw’,
X ~dPx.

m Need for additional theoretical material (for wellposedness), see [24].

B Uncertain photonics with l,incertain 0a,Cy
s

1.8e+07 T T T T Lde+13 1.8e+07 Lde+13
166407 [----1- 126413 16e407 ===+ L2ei13
LAe407 frevedeeesiooe Rl ) Lde407 |-
i B g i le+13
Lo Lo o le+13
1.2e+4+07 - T A 1.2e+07 -
B B B B B Se+12
Lep07 o--dee e b A - 1e+07 [+ 8e+12
6e+12
LRI e S ERATARAE & RREIRILITRRRRI RS & - 8e+06 [~ 6o+12
N & N : de+12
6e-+06 - - i Ge-H06 - .
i (O o412
10406 |- B 1 - Zetl2 1e+06 -
H— . 2.
20406 (g Ly Setesenstene O 20406 [----+ etz
0 i i i i 1 \ey Des12 0 i i i h i 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Gain x20 for this problem, see [24] b, 23/35



Uncertain analytical solution and convergence study
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C@Zi A homogeneous uncertain configuration

Analytical solution for statistical observables

The solutions are given by

_ e”a'st _ e—vﬁst
MY () =E[U( X)) = §Upe Tt ——— |
Os
2065t — 206t
MY (1) = B[U>(1, X)) = JUge2met S (6)
JS
Vivl® = MY (t) — (M (t))?

1 ——rrry

8 . . non-intrusive )

3] gPC intrusive MC scheme (N ¢ ME

= 0.1¢ \\~_- E
3

E

T

9

g 00Lf d
<

5

o0

2

0.001 L L I
1 10 100 1000 10000
NUQ

Nyc
1

The error e for the UQ problem is now e = O(\/m

) (for this test-pb at least!)



B A 6-D uncertain problem with sensitivity analysis
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= A two layered uncertain material: sensitivity analysis in 6D
cea y y analy

Case presentation

The configuration is the following:
m Similar three first points (v =1,...)
m The material is composed of two layers of different media, A and B with
Da =10,3] and Dp = [, 1] such that Dy UDp =D = [0, 1].
m Both media are pure, homogeneous and considered uncertain.
= Each depends on three parameters (X%);cqa 5y = (X, X3, X4)icqa,p) With

oi(z,t, X) =Y ic(apy [0f +3iX{] 1p,(2), VreD,teRT,
os(,t,w, ', X) = crapy (00 +0.X5] 1p,(2), VreDteR, (7)
n(z,t, X) =Yican M +7X3] 1p,(x), VzeD,teRY,

w (X}, X3, X4)icqa,py are independent uniformly distributed RVs on [—1,1].
m For the next computations, the mean quantities are set to
7 = 1.0, a =13, 74 =10, o =04, 04 =04, 1 =04,
78 =1.0,58% =09, 7% =1.0, o8 =04,58 =04, 78 =04,
m Statistical observables: mean, variance, Sobol indices as before
For this test-case, a non-intrusive gPC reference is too costly p. 27/35



. A two layered uncertain material: sensitivity analysis in 6D
cea y y analy

Mean, variance and setting of the problem

Mean and Variance of U(z,t =1, X)

1.4
1.3
1.2 -
1.1r

1k
0.9
0.8
0.7
0.6 -
0.5

T T T 0.25
MC-1-gPC mean
MC-i-gPC variance -

-1 0.2

- 0.15

- 0.1

0.4

0 01 02 03 04 05 06 07 08 09

® Run 1.024 x 10 particles, (P +X1)6 =729 on 1024 proc. in 750s.

m ni-gPC would need, same accuracies and restitution times, 131072 proc.

New problem: suppose now we want the variance to be lesser that 0.05 Vo € D

How should we work on the uncertain parameters?

On which ones?

Of how much should we reduce their respective uncertainties?

p. 28/35



Cea A two layered uncertain material: sensitivity analysis in

Total and first order Sobol indices

stetU](e, t = 1) vs. S}UI(z, t = 1) SPHUI (e, t = 1) vs. S{[U](z, t = 1)

st U] (e, t = 1) vs. S§[U](z, t = 1)
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p . A two layered uncertain material: sensitivity analysis in 6D
cea y y analy

Comparison: initial configuration vs. reduced uncertainty one

By running several calculations with decreasing variances on o' and o we get:

E[U](z,t = 1) and V[U](z, t = 1) VU, t = 1) x S U)(x, t = 1),i € {1,..,6}
=0.40, 64 = 0.40 (old) 6{ = 0.40, 62 = 0.40 (old)

it
6{* = 0.15, 62 = 0.15 (new) s :0.15,63i = 0.15 (new)

0.12
i i i i "Sobol fotal X1 (old) | +
; b total X foldl
o ; :
0.1 TR obol total f
s %nhnl fof
* Sobol to old o
4 Soﬁml tot: v) ——
0.08 obol tor -
% Sobol tot:
opol total 33
obol total X5 (new
0.06 b
0.04 - 4
‘.
%
%,
0.02 F S, |
. _—

Answer to the problem:
Enough reducing the uncertainties on X, X5 of only a factor 3.

= the study has been made possible by the new scheme.
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[ Verification of the theorem and (non-)optimality
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“Cea The previous homogeneous uncertain configuration

Back to the analytical solution for statistical observables (variance)

m Back to the previous convergence study with the new reduced model w.r.t. P:
at = 1 ,0s=0.8,6,=0.3 same with a numerical resolution

1 T T

T
P (* 0.197 + 5
&P foguced model from the (mmhu Blution =—s=
0.01 -~ educed model from a mimerical ve

nxp( (0. m," +% + ‘f
0.01

0.0001

0001 F---ee-e i
1¢-06 1606 fr-nveeemieeeeeee
1e-08 Te-08 oo I S A
1e-10 JESTI e s SR e A
S e Lol oot
le-14 Teld foooo ‘ R -
0 2 1 [3 s 10 12 14 0 2

m Spectral convergence is recovered also in practice (youpil)

m The previous mathematical analysis is probably not optimal
(we here obtain even faster convergence rates!)

m This is encouraging once an MC discretization will be introduced.
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C@Zi The previous homogeneous uncertain configuration

Back to the analytical solution for statistical observables (variance)

m Back to the previous convergence study with the new reduced model w.r.t. P:
=0.8,65=0.3 o =1,55 = 05,6, = 0.3

Ot = I,ES
Lr T

0.01 T

L%error on the variance

L?-error on the variance

0 2 1 6 8 10 12 11
P

m Spectral convergence is recovered also in practice (youpil)

m The previous mathematical analysis is probably not optimal
(we here obtain even faster convergence rates!)

m This is encouraging once an MC discretization will be introduced.
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C@ZI The previous homogeneous uncertain configuration

Back to the analytical solution for statistical observables (variance)

m Spectral convergence w.r.t. P and MC resolution:
oy =1,0s=0.8,55,=0.3

0.01 F g oo e P

0.0001

Sooooo
P [SAL N (511 R
SIS

log of the L?mnorm of the error (varianc

-
N
w
~
ot
=Y
-

m Spectral convergence is recovered also in practice V times of interest T'
m The gPC accuracy is below the MC error for relatively small P
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i A beautiful animation
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C@ZI Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(x,t, X) for P =7

1 T T T T T T T T T 1
. . . . . . mean =
varliance e—
0.8 H b ]
: : : : : : : : : =4 0.5
e e i e R S .
o
) 0
7 -
: : : : : : : : : 1-0.5
02 F AR AR AR R AR AR n
0 | | | i | | | | | _1
0 0.1 02 03 04 05 06 07 08 09 1
X
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C@ZI Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(x,t,X) for P =7

0.3 R e 0.0005
‘ ‘ ‘ realisations
‘ ‘ ‘ ‘ ‘ ‘ mean == < (00045
025 M. L O S S vanance =T o
' 1 : S : S : A
0.2 NN 00005
‘ 1 S 1 S 1 .7 0.0003
— : : L : L : :
o OB g 0.00028
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R P - R R Lo e e e R -
' ‘ : ! ! ! ! ! ! ;7 0.00015
oos PN\ o oo
N\ A seds
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X
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C@ZI Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7

0.25 T T T T T T 0.0008
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

T T T T T
‘ 1 ‘ ‘ X realisations ——
s Beees mean === _
‘ variance
"""""""""""""""""""""""
\\ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

T T T, T 0.0012
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

T T, T 0.0012

realisations ——

mean == |
variance
1 1 4 0.001
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

b
0.18 T T T T T T T T, T 0.0012
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

b
0.18 T T T T T T T T, T 0.0012
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

—T T 0.0012
realisations ——
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0.16 Croooos A variance "l
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0.0008
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

T T T

realisations ——
mean =

variance
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

T T T T T T T, T
‘ ‘ ‘ ‘ ‘ realisations ——
mean ==

variance s |
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)

0.18 T T T T T T T T, T 0.0012
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7
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Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7
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Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7
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Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7
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Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(z,t, X) for P =7
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C@ZI Uncertain linear Boltzmann equation

(with uncertain anisotropic scattering)

E[U](x,t), V[U](z,t) and realisations of U(x,t,X) for P =7
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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C@ZI Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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Uncertain linear Boltzmann equation
(with uncertain anisotropic scattering)
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