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CONTEXT

GLOBAL SENSITIVITY ANALYSIS



Sensitivity analysis: Sobol’ indices arise from a functional ANOVA
decomposition

Theorem 1 (ANOVA decomposition (Hoeffding, 1948; Antoniadis, 1984)). Assume that n: X; X
... X Xg = Y s a square integrable function of d independent random variables X1,...,Xy. Then
n admits a decomposition

>

Y =n(Xy,...,Xq)

|
g
=3
=

PS
-

(a) ng = E(Y),
(b) Ex,(na(Xa)) =01ifl €A,

(c) na(Xa) = Y pca(=1)I"PIE(Y|Xp).




Sensitivity analysis: Sobol’ indices arise from a functional ANOVA
decomposition

Definition 1 (Sobol’ indices (Sobol’, 1993)). Under the same assumptions of Theorem 1, the Sobol’
sensitivity index associated to a subset A of input variables is defined as

o Va (3) Ais a subset of
- VarY’ input variables

Sa

while the total Sobol’ index associated to A 1is

Sh= Y  Ss (4)

BCP,;, BNA#(D

Impact of an input alone

and its total Sobol’ index is given by

Impact of an input
through all its potential
interactions with others

Finally, the ANOVA decomposition (1) readily provides an interpretation of Sobol’ indices as a
percentage of explained output variance, i.e.

Interpretation as
percentage




Sensitivity analysis: Sobol’ in

dices

e Sobol’ indices

= The impact of each input can be quantitatively assessed
> First-order effect
> Total effect including also all possible interactions with other inputs
> Pure interactions can be properly defined

VarE(Y|X;, X)) — VarE(Y|X;) — VarE(Y | Xy) VarE(Y|X;, Xy) First-order effects can

S = VarV Var Y — 51— Sy be propertly subtracted




Sensitivity analysis: Sobol’ in

dices

e Sobol’ indices

Limitations
Assumption of independent inputs (more on this at the end)
Impact on output variance only
Outputs may not be scalars

Cannot be used for screening due to computational cost
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Sensitivity analysis: Sobol’ in

dices

e Sobol’ indices

Limitations
Assumption of independent inputs (more on this at the end) -> We will talk about Shapley later
Impact on output variance only \
|™ Moment-independent indices with kernels...
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Cannot be used for screening due to computational cost



Sensitivity analysis: Sobol’ in

dices

e Sobol’ indices

Limitations
Assumption of independent inputs (more on this at the end) -; We will talk about Shapley later
Impact on output variance only |
A-> Moment-independent indices with kernels...

Outputs may not be scalars

Cannot be used for screening due to computational cost -___ In particular, HSIC



Sensitivity analysis: our journey today
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Sensitivity analysis: our journey today

Independent inputs

Sobol Moment-independent

Density-

1st order Total order
based

Beyond Interesting for
variance generalization

Useful for in-depth
analysis, definition of
interactions ...

Both are necessary for
practical screening

Can handle
dependent
inputs

Can handle
any output

type

Interesting for
generalization




Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

QOO ®
XA BT[>

QO QOO

Today we will introduce several new
sensitivity indices
based on kernels which aim at
improving this picture!




Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

1st order

Total order

HSIC

1st order
HSIC ANOVA

Total order
HSIC ANOVA

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output

type

QOO ®

XA BT[>
QOO OO

QO NIDO

QOO0

Kernel-based
sensitivity analysis



Sensitivity analysis: other indices

 Going beyond the variance 1: goal-oriented sensitivity analysis
> Indices based on contrast functions (Fort et al. 2014), in particular quantile-oriented indices
> Reliability-based indices
> Many industrial applications

 Going beyond the variance 2: moment-independent indices
> Principle: Quantify the impact of an input parameter on the probability distribution of the output

SV = / Py (Y) — Py |x,=2(¥) | Px, (z)dxdy Borgonovo 2007

Py |x :x(y)
SlKL _ /prl:x (y) In ( | X ) Px, (:Ij)da:dy Kraskov et al. 2001
pY(y)



Sensitivity analysis: general point of view

 General framework for moment independent indices
Sl — EXZ (d(PY7 PY|Xl )) I:Bfuzjc(ge1ll5s&Borgonov02013

> |f the output probabillity distribution and the conditional one are « close », the input parameter has
little influence
> Example: f-divergence (D. 2015, Rahman 2016), with particular cases TV & KL




Sensitivity analysis: general point of view

 General framework for moment independent indices
Sl — IEXl (d(PY7 PY|Xl )) [Bftzlc(:)e1ll5$&Borgonov02013

> |f the output probabillity distribution and the conditional one are « close », the input parameter has
little influence

> Example: f-divergence (D. 2015, Rahman 2016), with particular cases TV & KL

> Toy example

Y =sin(X;) + 7sin(X3)? + X3 sin(X1)

X ~U(—m,m)forl=1,...,4
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X1 fixed X3 fixed

LR AR

X2 fixed X4 fixed

AR AR

Moment independent indices

= Pros
> They account for the whole effect of a parameter on the output distribution

> Density-based (many methods & packages)

= Cons
> Higher-order indices or outputs implies curse of dimensionality

> No ANOVA (« natural » normalization constant? Separation between interactions & main effects?)

StV = / oy (¥)px, (®)px, (&') — px;, x, v (%, &', y)|drdx’dy — StV — stV Does this make sense?



Sensitivity analysis: our journey today

o Step 1: another look at moment-independent indices

> We will use a promising candidate for the distance
> Theory of kernel-embedding of probability distributions
> A new sensitivity index with ANOVA decomposition: MMD indices

o Step 2: going further for screening

> We will introduce another kernel-based index, with much less computation cost: HSIC indices
> With a recent powerful result = ANOVA decomposition also!

o Step 3: handling dependence

> HSIC indices can be used, but without quantitative ranking
>  We propose kernel-based extension of Shapley effects



KERNEL-EMBEDDING OF PROBABILITY
DISTRIBUTIONS

A VERY QUICK SUMMARY



Kernel-embedding of probability distributions

_I_ Option 1: work directly in the space of probability measures
M 1 Examples: KS, TV, KL, Hellinger, ...




Kernel-embedding of probability distributions

Option 1: work directly in the space of probability measures

M]l__ Examples: KS, TV, KL, Hellinger, ...

Option 2: represent probability measures with some features




Kernel-embedding of probability distributions




Kernel-embedding of probability distributions
F

Feature Space

The dissimilarity between probability distributions is measured through the MQ
distance between their representation in the feature space




Kernel-embedding of probability distributions

Dissimilarity\measured only through the means



Kernel-embedding of probability distributions
F

Feature Space




Kernel-embedding of probability distributions

Gaussian and Laplace densities
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Obviously using a finite number of features will not lead
to a distance between probability distributions



Kernel-embedding of probability distributions
F

Feature Space

Dissimilarity measured through characteristic functions
Weighted distance leads to energy distance (Szekely & Rizzo 2013)



Kernel-embedding of probability distributions
F

_I_ Feature Space

General setting: take a feature map

o: Q) — F



Kernel-embedding of probability distributions




Kernel-embedding of probability distributions
F

+ RKHS

Instead of choosing the feature map, make it implicit and
assume that the feature space is a RKHS with a given kernel

k(z,z') = (o(z), p(z)) 7



Kernel-embedding of probability distributions




Kernel-embedding of probability distributions

The kernel mean embedding of a probability measure is defined as

UP = 4:§NPkX(€7°) :/

X

A distance between probability measures is then given by the Maximum Mean Discrepancy

MMD(P1,P2) = ||up, — pp,||#

The reproducing property in the RKHS gives the central result

MMD?(P,P3) =

e erkx(E,€) — 2

e ckx(§,¢) +

e ek (¢, ¢

Smola et al. 2007, Song 2008, Song et al. 2009



Kernel-embedding of probability distributions

Advantages of this distance vs others
>~ Thanks to the RKHS, only involves expectations of kernels
> Less prone to the curse of dimensionality

~ Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using
specific kernels



Kernel-embedding of probability distributions

Advantages of this distance vs others
>~ Thanks to the RKHS, only involves expectations of kernels
> Less prone to the curse of dimensionality

>~ Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using

specific kernels /

See J. Pelamatti’s talk

See N. Fellmann’s talk



Kernel-embedding of probability distributions

Advantages of this distance vs others
>~ Thanks to the RKHS, only involves expectations of kernels
> Less prone to the curse of dimensionality

~ Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using
specific kernels

For GSA, we will just plug-in this distance inside the general formula!

Sl — 4:Xl (d(PY7PY|Xl))

This means that we will define a kernel on the outputs
As a side effect, this gives a straightforward way to account for many output types in a computer code




Kernel-embedding of probability distributions

g §™P = Ex,MMD?(Py,Pyx,)
O ~ ~ ~ ~ ~ n
E — <L"X'l 44€,€/NPY k.y(§7 5,) o 2 <L‘)(l 44€NPY><NPY|XZ ky (57 C) —I_ 4*’Xl 44C,C/NPY|XZ ky(<7 CI)
LI- N N N
= Ex,E¢conpy x ky(( () — Eegnpy, ky(€ €)
§ SYMD - — Ex, (MMD?(Py,Pyx,)) = Ex, E¢cnpyx, kv((, () — Eeernpy by (€, €)

D. 2016 & 2021, Barr & Rabitz 2022



Kernel-embedding of probability distributions

Example: stochastic simulator with 5 input variables

5%
Y = (X1 42X + Up)sin(3X3 — 4X4 + N) + Uz + 5XsB + > iX;

1=1
Input variables « Internal » random variables
responsible for code stochasticity o
X1,...,X5 ~U(0,1) U ~U,1), U ~U(1,2), N ~N(0,1) B ~ Bernoulli(l/?)

»Use of a specific kernel to compare probability distributions (see J.

=9
Pelamatti’s talk)
1.001
0.751
0.04
| 5 10 1'5 20
0.50+
I Figure 3: Stochastic simulator test case. OQutput probability distribution for 20 values of the input

variables chosen at random. The distribution is estimated with a kernel-density estimator.

0.251

0.00+

X1 X2 X3 X4 X5

(a) MMD first-order index



Kernel-embedding of probability distributions

/

Links with Sobol’: if we use the vanilla dot product kernel ky(y,vy') = yy

2
SyMP =Ex, (“3§~Py (§) — E¢oryx, (C))
= Ex, (BY —E(Y|Xy))

— VaI' ":(Y‘XA) Unnormalized Sobol’




Kernel-embedding of probability distributions

Links with Sobol’: if we use the vanilla dot product kernel ky(y,y') = yy’

SMMD

4:XA (

4:§NPY (5) o

L¢Py x . (C))Q

Y —E(Y|X4))?

*’XA (
4‘1

L(Y]Xa)

Links with Sobol’: if Mercer’s theorem holds

=) 6 (¥)¢r(y) mmp
r=1

Unnormalized Sobol’

2 gnpyix, (0r(€)¢r(€)) = Econp (6-()0r(C) }

» VarE (¢

2 (60 (V)X )? — E (60 (1))? }

r(Y)[Xa).

Aggregation of Sobol’ indices on a (possibly) infinite number of nonlinear transformations of the output



Kernel-embedding of probability distributions

Advantages of this distance vs others
» Thanks to the RKHS, only involves expectations of kernels
> Less prone to the curse of dimensionality

» Can easily handle structured objects (curves, images, graphs, probability measures, sets) by using
specific kernels

> Working in a RKHS gives access to orthogonal projections and decompositions



Kernel-embedding of probability distributions

More importantly, we have an ANOVA-like decomposition !

Theorem 3 (ANOVA decomposition for MMD). Under the same assumptions of Theorem 1 (in
particular, the random wvector X has independent components) and with Assumption ﬂ, denote

MMDZ, = Eky(Y,Y) — Eky(Y,Y") where Y' is an independent copy of Y. Then the total MMD
can be decomposed as

MMD3,, = » MMD?
ACPy

where each term s given by

MMD?, = 37 ()4 /PIEx,, (MMD?(Py, Py(x,,))
BCA

So we can define properly normalized MMD-based sensitivity indices
Proof is straightforward with Mercer’s theorem



Kernel-embedding of probability distributions

Definition 2 (MMD-based sensitivity indices). In the frame of Theorem 3, let A C Py. The
normalized MMD-based sensitivity index associated to a subset A of input variables is defined as

Impact of a subset
alone

Impact of a subset
through all its potential
Interactions with others

From Theorem 3, we have the fundamental identity providing the interpretation of MMD-based
indices as percentage of the explained generalized variance MMD?Z. . :

Interpretation as
percentage




Kernel-embedding of probability distributions

New MMD-based sensitivity index

First moment-independent index with a decomposition
Can handle easily structured outputs
Close generalization of Sobol’ index, which is obtained as a particular case

Estimation

We can easily recycle estimators proposed for Sobol’ indices
Monte-Carlo, Pick-freeze, Rank, k-NN
See D. 2021 for details



Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order
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Beyond
variance

ANOVA
(ranking)
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Estimation
(given data +
small data)

Can handle
dependent
inputs
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any output
type

QOO ®

XA BT[>

QO QOO




Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

1st order

Total order

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

00000 O

QR X

OO OOQ:

QDO AV ::

Kernel-based
sensitivity analysis
with ANOVA
decomposition!

But cannot be used
for screening (yet)
and estimation as

difficult as for Sobol’



Kernel-embedding of probability distributions

Remember our general GSA setting ?

Sl — 'EXl (d(PY7PY|Xl))

Other point of view

/Z?Y\Xl_x(y) In (pYXl_m(y)) px, (x)dzdy

py (¥)

/lﬂ( PY. X, (y7x) )pY,Xl (y,aj)daﬁdy

PY (y)sz ('CU)
— MI(X,,Y)

KL
S

The KL-based index actually corresponds to the mutual information between one of the inputs and the
output, i.e. a measure of their dependence



Kernel-embedding of probability distributions

The MMD strikes back

Other major use: testing independence of random vectors

2
MMD2(PUV, PU X PV) — HIU’PUV — HPy X lu'PvllH

HSIC(U, V)

— 2Ey,v |

4:U/kx(U, U,)

MMD?*(Pyv, Py ® Pv)
{:U,U/,V,V/ kX(U, U,)ky(V, V/)

+ Eyukx(U,U)Ey v ky(V,V')

“:V/ ky (V, V,)]

Many applications: goodness-of-fit, independence tests, feature selection, ...

Gretton et al. 2005a,b



Kernel-embedding of probability distributions

HSIC-based sensitivity index
SH5 = HSIC(X 4,Y)

Already proposed with a hand-made normalization in D. 2015

Detects independence, with small sample size — Screening!

A kernel for the output just like for the MMD + now a kernel for the inputs

Screening can be achieved via statistical tests of independence (De Lozzo & Marrel 2016)
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Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

1st order Total order

HSIC

Beyond
variance

ANOVA
(ranking)

QO

based

%

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

*

Can handle
any output
type

XA QIR

Q0900

XA Q> R[>

QO

Kernel-based
sensitivity analysis
that can be used for
screening

But we have lost the
ANOVA

decomposition &

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests



Kernel-embedding of probability distributions

But actually no, there is an ANOVA decomposition for HSIC
ANOVA-like decomposition for HSIC

Theorem 4 (ANOVA decomposition for HSIC). Under the same assumptions of Theorem 1 (in
particular, the random vector X has independent components) and with Assumptions Q and 3, the
HSIC dependence measure between X = (X1,...,Xq) and 'Y can be decomposed as

HSIC (X,Y) = )  HSICy4 Assumption on the kernels

used for the inputs
where each term is given by

HSIC4 = » (—1)MI=IPIHSIC (X5,Y)
BCA

and HSIC (X, Y) is defined with a product RKHS Hp = Fp x G with kernel kp(xp, xg)ky (y,y') =
[Liep (1 + ki(z, @) ky(y, ') as in (10).

So we can define properly normalized HSIC-based sensitivity indices
Proof relies on orthogonal decompositions in RKHS (see Appendix)



Kernel-embedding of probability distributions

But actually no, there is an ANOVA decomposition for HSIC

Definition 3 (HSIC-based sensitivity indices). In the frame of Theorem /4, let A C Py. The
normalized HSIC-based sensitivity index associated to a subset A of input variables 1s defined as

Impact of a subset
alone

HSIC(X—Aa Y) Impact of a subset
HSIC (X,Y) through all its potential

Interactions with others

BCP4, BNA#(D

From Theorem 4, we have the fundamental identity providing the interpretation of HSIC-based
indices as percentage of the explained HSIC dependence measure between X = (X1,...,Xy) and Y :

Z HSIC Interpretation as
Ach, percentage



Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

1st order

Total order

HSIC

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

*

Can handle
any output
type

QOO ®

XA BT[>
QOO OO

QA0 NIDO

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests



Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

1st order

Total order

HSIC

1st order
HSIC ANOVA

Total order
HSIC ANOVA

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

*

Can handle
any output
type

XA QIR I

XA QR EIEX
QOO Q:

QO IDO

QDO 0SO

Kernel-based
sensitivity analysis
that can be used for
screening and with
an ANOVA
decomposition

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests



Sensitivity analysis: our journey today

Independent inputs

Sobol

Moment-independent

1st order

Total order

Density-

1st order

Total order

HSIC

1st order
HSIC ANOVA

Total order
HSIC ANOVA

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

*

Can handle
any output
type

X IR >

X BT[>

Q0 OOOQ:

Q9O IDO

DR RIS

The last step is to
discuss how we can
handle dependent
Inputs

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests



HANDLING DEPENDENT INPUTS



Sensitivity analysis: dependent inputs

 When inputs are dependent, a large consensus in ML is to use Shapley
effects

= The building blocks are Sobol’ indices (variances of conditional expectations)
= \We have a quantitative ranking via a decomposition (i.e. they sum to 1)

= But we are no longer able to measure interactions, since they are mixed with the dependence

= (However Shapley effects suffer from limitations, and recent research aims at improving them, see
e.g. Herin et al. 2022)



Sensitivity analysis: Shapley effects

Definition 4 (Shapley effects (Shapley, 1953)). For anyl=1...,d, the Shapley effect of input X

1S given by

1 1

h; = —
Shy VarY p

following decomposition

> (7

ACP,, ARl

A

d, (Y‘XAU{Z}) — Var

3 (VX 0) } (14)

Moreover, we have the



Sensitivity analysis: our journey today

Dependent inputs

Shapley

Moment-independent

Shapley

HSIC

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests



Sensitivity analysis: our journey today

Dependent inputs

Shapley Moment-independent

Shapley HSIC

Beyond
variance

ANOVA

(ranking) We will now try to recycle our

previous kernel-based indices to
improve this picture!

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests




Sensitivity analysis: Shapley effects

Definition 4 (Shapley effects (Shapley, 1953)). For anyl=1...,d, the Shapley effect of input X
1S given by

1 1 p—1\""
Shl — — Z ( ) {Var i (Y|XAU{Z}) — Var f(Y‘XA) } (14)
VarYpAgPd,Azl | A

This definition corresponds to the Shapley value (Shapley, 1953)

s=1 Y (p‘zul)_l {va,l(AU{l})—val(A)}

P ACPy, AL

with value function val : Py — R4 equal to val(A) = VarE (Y |X 4) /VarY. Moreover, we have the
following decomposition

p The definition iIs general, and we have
> Shi=1 flexibility for the value function!
[=1

The only requirement is that the value function satisfies val : P; — Ry such that val(@)) = 0.



Definition 5 (Kernel-embedding Shapley effects). For anyl=1...,d, we define
(a) The MMD-Shapley effect

1

SHMMD

provided Assumption

1

MMD?Z ,

1

>

p ACPy, ARl

holds.

(b) The HSIC-Shapley effect

1

1

Sh%‘ISIC _

provided Assumptions

~ HSIC (X,Y)p

2

and

3

hold.

) {

O (MMD2 (PY7 PY|XA )) }

'CXAu{l} (MMDz(PY7 PY|XAU{1}

Sensitivity analysis: Shapley effects

)) ﬂMMD
e

S (p|2|1>_1 {HSIC (XAU{Z},Y)—HSIC(XA,Y)} JH -

ACP,, AFl



Sensitivity analysis: our journey today

Dependent inputs

Shapley

Moment-independent

Shapley

HSIC

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests



Sensitivity analysis: our journey today

Dependent inputs

Shapley Moment-independent

Shapley HSIC MMD-Shapley | HSIC-Shapley

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests




Sensitivity analysis: our journey today

Dependent inputs

MMD Shapley is to Shapley
Shapley Moment-independent What MMD was tO SObOI,

Shapley HSIC MMD-Shapley | HSIC-Shapley

Beyond
variance

ANOVA
(ranking)

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests




Sensitivity analysis: our journey today

Dependent inputs

MMD Shapley is to Shapley
Shapley Moment-independent What MMD was tO SObOI,

Shapley HSIC MMD-Shapley | HSIC-Shapley

Beyond
variance

ANOVA
(ranking)

HSIC-Shapley seems to
have the most potential

Screening

Estimation
(given data +
small data)

Can handle
dependent
inputs

Can handle
any output
type

* Note: they do not require
iIndependence to perform screening
with statistical hypothesis tests




Conclusions & Perspectives

Kernel-based sensitivity analysis seems to have the potential to answer several practical needs
> ANOVA decomposition just like Sobol’

> Screening at low cost, with given data

» Can handle a ton of (complicated) outputs

> Most of them are now available in the sensitivity package!



Conclusions & Perspectives

Kernel-based sensitivity analysis seems to have the potential to answer several practical needs
> ANOVA decomposition just like Sobol’

> Screening at low cost, with given data

» Can handle a ton of (complicated) outputs

> Most of them are now available in the sensitivity package!

But there Is a catch
» The complexity is reported on the choice of the kernel(s)
v There is a vast literature on this problem though

> Interpretation of these indices is less straightforward and natural when compared to Sobol’

» This means we have still work to do from a theoretical and practical point of view (see e.g. G. Sarazin’s
postdoc results in ANR Samurai project)



Sensitivity analysis: our journey today
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APPENDIX



I Kernel-embedding of probability distributions for GSA: HSIC

HSIC-based sensitivity index
S5 = HSIC(X 4,Y)

> Already proposed with a hand-made normalization in D. 2015
> Works very well for screening, with small sample size

But it actually exhibits an ANOVA decomposition too

Assumption 3. The reproducing kernel kx of F is of the form

p
=1+ &z, z)) (10)
=1

where for each 1 =1,...,d, ki(-,-) is the reproducing kernel of a RKHS F; of real functions depend-
ing only on variable x; and such that 1 & F;.
In addition, for alll =1,...,d and Vx; € X}, we have

/ ki(zy, 2;)dPx, (z]) = 0. (11)
X
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I Kernel-embedding of probability distributions for GSA: HSIC

HSIC-based sensitivity index
S5 = HSIC(X 4,Y)

> Already proposed with a hand-made normalization in D. 2015
> Works very well for screening, with small sample size

But it actually exhibits an ANOVA decomposition too

Assumption 3. The reproducing kernel kx of F is of the form Product kernel

where for each 1 =1,...,d, ki(-,-) is the reproducing kernel of a RKHS F; of real functions depend-

ing only on variable x; and such tha Without constant functions
In addition, for alll =1,...,d and Vx; € X}, we have

Zero-mean kernel (11)




I Kernel-embedding of probability distributions for GSA: HSIC

HSIC-based sensitivity index

Needed to get orthogonality
SH5 = HSIC(X 4,Y) inside the RKHS

> Already proposed with a hand-made normalization in D. 2015
> Works very well for screening, with small sample size

But it actually exhibits an ANOVA decomposition too

Assumption 3. The reproducing kernel kx of F is of the form Product kernel )

p
H 1 N kl a:l,:cl (10)
=1

where for each 1 =1,...,d, ki(-,-) is the reprodyetq kernel of a RKHS F; of Tew
ing only on variable x; and such tha Without constant functions

In addition, for alll =1,...,d and Vx; € X}, we
1

unctions/ depend-




I Kernel-embedding of probability distributions for GSA: HSIC

New HSIC-based sensitivity index

> Also a decomposition
> Can handle easily structured outputs
> Generalization of MMD-based index!

Kernel more or
less converging
to a dirac

Proposition 2. For all subset A C Py, let us define a product RKHS Ha = Fa X G with kernel
ka(xa,x0)ky(y,y"). We further assume that Vx4 € X4, px ,(x4) > 0 and that

1

where HSIC(X 4,Y) is defined with the product RKHS H4 = Fa X G and MMD?(Py, Pyx ,) with
the RKHS G.



I Kernel-embedding of probability distributions for GSA: HSIC

Wait a minute!
In addition, for alll =1,...,d and Vx; € X}, we have

/kz(xl,wf)dPXz(iﬂf)=0- (11)
X

> How do we build a kernel satisfying this?




r
Kernel-embedding of probability distributions for GSA: HSIC

/ ki(zy, 2;)dPx, (z]) = 0.
X

Easy case: inputs are uniform on [0,1]
> We can directly use famous Sobolev kernels (from SS-ANOVA, COSSO, ACOSSO, ...)

ki(x1, z)) = Bar(loi = a)) | zr: Bj(z1)Bj(z;)

(—) e T & T ()

where B are Bernoulli polynomials.

> Always possible to transform independent inputs to end up with this case (via probability integral transform)
> But sensitivity index is not invariant via nonlinear transformations



r
Kernel-embedding of probability distributions for GSA: HSIC

/ ki(zy, 2;)dPx, (z]) = 0.
X
General case 1

> Kernels built by Durrande et al. (2012) in the context of GP models with ANOVA decomposition inside

[ k(x,t)dP(t) [ k(z',t)dP(t)
[[ k(s,t)dP(s)dP(t)

ko' (z,2') = k(z, 2

> Built from any initial kernel k
> Very nice theory, but needs numerical integration to compute the second term in general



Zero-mean kernel

I Kernel-embedding of probability distributions for GSA: HSIC

/ ki(zy, 2;)dPx, (z]) = 0.
X

General case 2

> Kernels introduced in the context of Stein discrepancy in lieu of MMD

Vxp(x)
p(x)

vx’p(xl)
p(x’)

Vxp(x) Virp(x')

k(‘)g(x, XI) — vax/k(x, xl) | p(X) p(x’)

Vyrk(x,x") 4 Vxk(x,x') - k(x,x)

> Built from any initial kernel k again, but must be differentiable this time
> Needs derivative of the log pdf of the inputs
> Means that we only need to know the pdf up to a constant

+ A potential interest for GSA problems where some inputs are obtained through Bayesian calibration



I Proof outline for ANOVA decomposition of HSIC (1/2)

0
First assume that Mercer’s theorem holds ky(y, y’) = Z (br(y)(br (y')
r=1

Then write HSIC as

HSIC(X,Y)=ZH9[’°]H3r g (x) = /X /y kx(x,x" )¢, (y) [pxy (X', y) — px (X )py ()] dx'dy

Key part: orthogonal decomposition of each g function thanks to Kuo et al. (2010)

> This is where we need the strong assumptions on the input kernels

g = 35" g

ACP,

g5 = > (—)HAIBIp_p (gl
BCA



I Proof outline for ANOVA decomposition of HSIC (2/2)
We then plug the decompositions inside HSIC

HSIC(X,Y) = Z 19" |%

= Y Yz
ACPdT 1

= > > (-nH- 'B'ZHP_ g™)||%
ACP; BCA

And the final result comes from rewriting the projections

> IP-sg"™)IF Z /X . /y xka(xB,X’B)%(y)@(y’) px 5y (XB,Y) — Px5(XB)pY (¥)]

pXBY x37 Y ) — PXp (XB)pY( )] dXBdXIdedy/

- /X - /y N B(XB,Xp) (Z ¢r(y)¢r(y')) x5y (XB,Y) — Px5(XB)PY (Y)]

r=1
pxpv(XB,Y) — pxz(XB)pY (V)] dxpdxpdydy’

/ / k(xB,xB)ky(y,y) [px,v(XB,Y) — Px 5 (XB)PY (V)]
XpxXg JYXY

Px,y(XB,Y') — px5(XB)py (Y')] dxpdxpdydy’
= HSIC(Xp,Y).



